Cargando…

Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5

Autophagy and apoptosis are associated with cardiovascular diseases. Emerging evidence shows that microRNAs (miRs) are critical in the development of pathological processes underlying cardiovascular diseases by regulating the induction of apoptosis and autophagy. The present study aimed to investiga...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Chenjun, Lu, Jide, Wang, Hairong, Qi, Yuan, Kan, Ying, Ge, Zhiru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443343/
https://www.ncbi.nlm.nih.gov/pubmed/30864677
http://dx.doi.org/10.3892/ijmm.2019.4128
_version_ 1783407841408712704
author Zhang, Chenjun
Lu, Jide
Wang, Hairong
Qi, Yuan
Kan, Ying
Ge, Zhiru
author_facet Zhang, Chenjun
Lu, Jide
Wang, Hairong
Qi, Yuan
Kan, Ying
Ge, Zhiru
author_sort Zhang, Chenjun
collection PubMed
description Autophagy and apoptosis are associated with cardiovascular diseases. Emerging evidence shows that microRNAs (miRs) are critical in the development of pathological processes underlying cardiovascular diseases by regulating the induction of apoptosis and autophagy. The present study aimed to investigate the role of miR-103a-3p in cardiomyocyte injury through autophagy and apoptosis. H9c2 cells were cultured under hypoxia and reoxygenation (H/R) conditions and were used to mimic cells under ischemia. The transfection of cells with miR-103a-3p (mimics and inhibitors) was performed to examine its function in cardiomyocytes. The expression levels of miR-103a-3p were evaluated by reverse transcription-quantitative polymerase chain reaction analysis. Cell viability was determined using an MTT assay, and the lactate dehydrogenase assay (LDH) was used to investigate cell injury. The expression levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, Beclin-1, autophagy-related 5 (Atg5), cleaved caspase-3 and cleaved caspase-9 were detected using western blotting. Immunofluorescence assays were performed to detect the expression of LC3 as a marker of autophagy. The target gene of miR-103a-3p was identified using dual-luciferase reporter assays. The results revealed that the expression levels of miR-103a-3p were significantly downregulated in cardiomyocytes under H/R conditions. Injury of the cardiomyocytes was evaluated under H/R conditions. Following transfection of the cells with miR-103a-3p inhibitors, cell injury was increased, as determined by LDH and MTT assays. The expression levels of apoptotic proteins were consistent with the results obtained in the LDH and cell viability assays. The induction of autophagy was increased in cells under H/R conditions and cells with miR-103a-3p inhibitor transfection, whereas the induction of autophagy was decreased in cells transfected with miR-103a-3p mimics. In addition, the data indicated that miR-103a-3p directly targeted Atg5, which regulated the induction of autophagy and apoptosis. Taken together, these findings indicate that, following the inhibition of miR-103a-3p, Atg5 promotes autophagy and apoptosis in cardiomyocytes by directly targeting Atg5. Therefore, miR-103a-3p can be considered a potential therapeutic target for myocardial ischemia.
format Online
Article
Text
id pubmed-6443343
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-64433432019-04-03 Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5 Zhang, Chenjun Lu, Jide Wang, Hairong Qi, Yuan Kan, Ying Ge, Zhiru Int J Mol Med Articles Autophagy and apoptosis are associated with cardiovascular diseases. Emerging evidence shows that microRNAs (miRs) are critical in the development of pathological processes underlying cardiovascular diseases by regulating the induction of apoptosis and autophagy. The present study aimed to investigate the role of miR-103a-3p in cardiomyocyte injury through autophagy and apoptosis. H9c2 cells were cultured under hypoxia and reoxygenation (H/R) conditions and were used to mimic cells under ischemia. The transfection of cells with miR-103a-3p (mimics and inhibitors) was performed to examine its function in cardiomyocytes. The expression levels of miR-103a-3p were evaluated by reverse transcription-quantitative polymerase chain reaction analysis. Cell viability was determined using an MTT assay, and the lactate dehydrogenase assay (LDH) was used to investigate cell injury. The expression levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, Beclin-1, autophagy-related 5 (Atg5), cleaved caspase-3 and cleaved caspase-9 were detected using western blotting. Immunofluorescence assays were performed to detect the expression of LC3 as a marker of autophagy. The target gene of miR-103a-3p was identified using dual-luciferase reporter assays. The results revealed that the expression levels of miR-103a-3p were significantly downregulated in cardiomyocytes under H/R conditions. Injury of the cardiomyocytes was evaluated under H/R conditions. Following transfection of the cells with miR-103a-3p inhibitors, cell injury was increased, as determined by LDH and MTT assays. The expression levels of apoptotic proteins were consistent with the results obtained in the LDH and cell viability assays. The induction of autophagy was increased in cells under H/R conditions and cells with miR-103a-3p inhibitor transfection, whereas the induction of autophagy was decreased in cells transfected with miR-103a-3p mimics. In addition, the data indicated that miR-103a-3p directly targeted Atg5, which regulated the induction of autophagy and apoptosis. Taken together, these findings indicate that, following the inhibition of miR-103a-3p, Atg5 promotes autophagy and apoptosis in cardiomyocytes by directly targeting Atg5. Therefore, miR-103a-3p can be considered a potential therapeutic target for myocardial ischemia. D.A. Spandidos 2019-05 2019-03-12 /pmc/articles/PMC6443343/ /pubmed/30864677 http://dx.doi.org/10.3892/ijmm.2019.4128 Text en Copyright: © Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Zhang, Chenjun
Lu, Jide
Wang, Hairong
Qi, Yuan
Kan, Ying
Ge, Zhiru
Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5
title Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5
title_full Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5
title_fullStr Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5
title_full_unstemmed Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5
title_short Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5
title_sort effects of mir-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating atg5
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443343/
https://www.ncbi.nlm.nih.gov/pubmed/30864677
http://dx.doi.org/10.3892/ijmm.2019.4128
work_keys_str_mv AT zhangchenjun effectsofmir103a3pontheautophagyandapoptosisofcardiomyocytesbyregulatingatg5
AT lujide effectsofmir103a3pontheautophagyandapoptosisofcardiomyocytesbyregulatingatg5
AT wanghairong effectsofmir103a3pontheautophagyandapoptosisofcardiomyocytesbyregulatingatg5
AT qiyuan effectsofmir103a3pontheautophagyandapoptosisofcardiomyocytesbyregulatingatg5
AT kanying effectsofmir103a3pontheautophagyandapoptosisofcardiomyocytesbyregulatingatg5
AT gezhiru effectsofmir103a3pontheautophagyandapoptosisofcardiomyocytesbyregulatingatg5