Cargando…

Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains

BACKGROUND: Efflux pumps mediate antimicrobial resistance in several WHO critical priority bacterial pathogens. However, most available data come from laboratory strains. The quantitative relevance of efflux in more relevant clinical isolates remains largely unknown. METHODS: We developed a versatil...

Descripción completa

Detalles Bibliográficos
Autores principales: Cunrath, Olivier, Meinel, Dominik M., Maturana, Pauline, Fanous, Joseph, Buyck, Julien M., Saint Auguste, Pamela, Seth-Smith, Helena M.B., Körner, Jonas, Dehio, Christoph, Trebosc, Vincent, Kemmer, Christian, Neher, Richard, Egli, Adrian, Bumann, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443642/
https://www.ncbi.nlm.nih.gov/pubmed/30852163
http://dx.doi.org/10.1016/j.ebiom.2019.02.061
_version_ 1783407872182321152
author Cunrath, Olivier
Meinel, Dominik M.
Maturana, Pauline
Fanous, Joseph
Buyck, Julien M.
Saint Auguste, Pamela
Seth-Smith, Helena M.B.
Körner, Jonas
Dehio, Christoph
Trebosc, Vincent
Kemmer, Christian
Neher, Richard
Egli, Adrian
Bumann, Dirk
author_facet Cunrath, Olivier
Meinel, Dominik M.
Maturana, Pauline
Fanous, Joseph
Buyck, Julien M.
Saint Auguste, Pamela
Seth-Smith, Helena M.B.
Körner, Jonas
Dehio, Christoph
Trebosc, Vincent
Kemmer, Christian
Neher, Richard
Egli, Adrian
Bumann, Dirk
author_sort Cunrath, Olivier
collection PubMed
description BACKGROUND: Efflux pumps mediate antimicrobial resistance in several WHO critical priority bacterial pathogens. However, most available data come from laboratory strains. The quantitative relevance of efflux in more relevant clinical isolates remains largely unknown. METHODS: We developed a versatile method for genetic engineering in multi-drug resistant (MDR) bacteria, and used this method to delete tolC and specific antibiotic-resistance genes in 18 representative MDR clinical E. coli isolates. We determined efflux activity and minimal inhibitory concentrations for a diverse set of clinically relevant antibiotics in these mutants. We also deleted oprM in MDR P. aeruginosa strains and determined the impact on antibiotic susceptibility. FINDINGS: tolC deletion abolished detectable efflux activity in 15 out of 18 tested E. coli strains, and modulated antibiotic susceptibility in many strains. However, all mutant strains retained MDR status, primarily because of other, antibiotic-specific resistance genes. Deletion of oprM altered antibiotic susceptibility in a fraction of clinical P. aeruginosa isolates. INTERPRETATION: Efflux modulates antibiotic resistance in clinical MDR isolates of E. coli and P. aeruginosa. However, when other antimicrobial-resistance mechanisms are present, inhibition of MDR efflux pumps alone is often not sufficient to restore full susceptibility even for antibiotics with a dramatic impact of efflux in laboratory strains. We propose that development of novel antibiotics should include target validation in clinical MDR isolates. FUND: Innovative Medicines Initiative of European Union and EFPIA, Schweizerischer Nationalfonds, Swiss National Research Program 72, EU Marie Skłodowska-Curie program. The funders played no role in design, data collection, data analysis, interpretation, writing of the report, and in the decision to submit the paper for publication.
format Online
Article
Text
id pubmed-6443642
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-64436422019-04-11 Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains Cunrath, Olivier Meinel, Dominik M. Maturana, Pauline Fanous, Joseph Buyck, Julien M. Saint Auguste, Pamela Seth-Smith, Helena M.B. Körner, Jonas Dehio, Christoph Trebosc, Vincent Kemmer, Christian Neher, Richard Egli, Adrian Bumann, Dirk EBioMedicine Research paper BACKGROUND: Efflux pumps mediate antimicrobial resistance in several WHO critical priority bacterial pathogens. However, most available data come from laboratory strains. The quantitative relevance of efflux in more relevant clinical isolates remains largely unknown. METHODS: We developed a versatile method for genetic engineering in multi-drug resistant (MDR) bacteria, and used this method to delete tolC and specific antibiotic-resistance genes in 18 representative MDR clinical E. coli isolates. We determined efflux activity and minimal inhibitory concentrations for a diverse set of clinically relevant antibiotics in these mutants. We also deleted oprM in MDR P. aeruginosa strains and determined the impact on antibiotic susceptibility. FINDINGS: tolC deletion abolished detectable efflux activity in 15 out of 18 tested E. coli strains, and modulated antibiotic susceptibility in many strains. However, all mutant strains retained MDR status, primarily because of other, antibiotic-specific resistance genes. Deletion of oprM altered antibiotic susceptibility in a fraction of clinical P. aeruginosa isolates. INTERPRETATION: Efflux modulates antibiotic resistance in clinical MDR isolates of E. coli and P. aeruginosa. However, when other antimicrobial-resistance mechanisms are present, inhibition of MDR efflux pumps alone is often not sufficient to restore full susceptibility even for antibiotics with a dramatic impact of efflux in laboratory strains. We propose that development of novel antibiotics should include target validation in clinical MDR isolates. FUND: Innovative Medicines Initiative of European Union and EFPIA, Schweizerischer Nationalfonds, Swiss National Research Program 72, EU Marie Skłodowska-Curie program. The funders played no role in design, data collection, data analysis, interpretation, writing of the report, and in the decision to submit the paper for publication. Elsevier 2019-03-07 /pmc/articles/PMC6443642/ /pubmed/30852163 http://dx.doi.org/10.1016/j.ebiom.2019.02.061 Text en © 2019 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research paper
Cunrath, Olivier
Meinel, Dominik M.
Maturana, Pauline
Fanous, Joseph
Buyck, Julien M.
Saint Auguste, Pamela
Seth-Smith, Helena M.B.
Körner, Jonas
Dehio, Christoph
Trebosc, Vincent
Kemmer, Christian
Neher, Richard
Egli, Adrian
Bumann, Dirk
Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains
title Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains
title_full Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains
title_fullStr Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains
title_full_unstemmed Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains
title_short Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains
title_sort quantitative contribution of efflux to multi-drug resistance of clinical escherichia coli and pseudomonas aeruginosa strains
topic Research paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443642/
https://www.ncbi.nlm.nih.gov/pubmed/30852163
http://dx.doi.org/10.1016/j.ebiom.2019.02.061
work_keys_str_mv AT cunratholivier quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT meineldominikm quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT maturanapauline quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT fanousjoseph quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT buyckjulienm quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT saintaugustepamela quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT sethsmithhelenamb quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT kornerjonas quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT dehiochristoph quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT treboscvincent quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT kemmerchristian quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT neherrichard quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT egliadrian quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains
AT bumanndirk quantitativecontributionofeffluxtomultidrugresistanceofclinicalescherichiacoliandpseudomonasaeruginosastrains