Cargando…

Effects of hyperthyroidism in the development of the appendicular skeleton and muscles of zebrafish, with notes on evolutionary developmental pathology (Evo-Devo-Path)

The hypothalamus-pituitary-thyroid (HPT) axis plays a crucial role in the metabolism, homeostasis, somatic growth and development of teleostean fishes. Thyroid hormones regulate essential biological functions such as growth and development, regulation of stress, energy expenditure, tissue compound,...

Descripción completa

Detalles Bibliográficos
Autores principales: Shkil, Fedor, Siomava, Natalia, Voronezhskaya, Elena, Diogo, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443675/
https://www.ncbi.nlm.nih.gov/pubmed/30931985
http://dx.doi.org/10.1038/s41598-019-41912-9
Descripción
Sumario:The hypothalamus-pituitary-thyroid (HPT) axis plays a crucial role in the metabolism, homeostasis, somatic growth and development of teleostean fishes. Thyroid hormones regulate essential biological functions such as growth and development, regulation of stress, energy expenditure, tissue compound, and psychological processes. Teleost thyroid follicles produce the same thyroid hormones as in other vertebrates: thyroxin (T4) and triiodothyronine (T3), making the zebrafish a very useful model to study hypo- and hyperthyroidism in other vertebrate taxa, including humans. Here we investigate morphological changes in T3 hyperthyroid cases in the zebrafish to better understand malformations provoked by alterations of T3 levels. In particular, we describe musculoskeletal abnormalities during the development of the zebrafish appendicular skeleton and muscles, compare our observations with those recently done by us on the normal developmental of the zebrafish, and discuss these comparisons within the context of evolutionary developmental pathology (Evo-Devo-Path), including human pathologies.