Cargando…

Direct reciprocity and model-predictive rationality explain network reciprocity over social ties

Since M. A. Nowak & R. May’s (1992) influential paper, limiting each agent’s interactions to a few neighbors in a network of contacts has been proposed as the simplest mechanism to support the evolution of cooperation in biological and socio-economic systems. The network allows cooperative agent...

Descripción completa

Detalles Bibliográficos
Autores principales: Dercole, Fabio, Della Rossa, Fabio, Piccardi, Carlo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443768/
https://www.ncbi.nlm.nih.gov/pubmed/30931975
http://dx.doi.org/10.1038/s41598-019-41547-w
Descripción
Sumario:Since M. A. Nowak & R. May’s (1992) influential paper, limiting each agent’s interactions to a few neighbors in a network of contacts has been proposed as the simplest mechanism to support the evolution of cooperation in biological and socio-economic systems. The network allows cooperative agents to self-assort into clusters, within which they reciprocate cooperation. This (induced) network reciprocity has been observed in several theoreticalmodels and shown to predict the fixation of cooperation under a simple rule: the benefit produced by an act of cooperation must outweigh the cost of cooperating with all neighbors. However, the experimental evidence among humans is controversial: though the rule seems to be confirmed, the underlying modeling assumptions are not. Specifically, models assume that agents update their strategies by imitating better performing neighbors, even though imitation lacks rationality when interactions are far from all-to-all. Indeed, imitation did not emerge in experiments. What did emerge is that humans are conditioned by their own mood and that, when in a cooperative mood, they reciprocate cooperation. To help resolve the controversy, we design a model in which we rationally confront the two main behaviors emerging from experiments—reciprocal cooperation and unconditional defection—in a networked prisoner’s dilemma. Rationality is introduced by means of a predictive rule for strategy update and is bounded by the assumed model society. We show that both reciprocity and a multi-step predictive horizon are necessary to stabilize cooperation, and sufficient for its fixation, provided the game benefit-to-cost ratio is larger than a measure of network connectivity. We hence rediscover the rule of network reciprocity, underpinned however by a different evolutionary mechanism.