Cargando…

Cytotoxicity and biomechanics of suture anchors used in labral repairs

BACKGROUND: Biodegradable suture anchors are associated with higher redislocation rates. This study examined whether the biocompatibility and/or biomechanical properties of suture anchors contribute to the increase in complications. METHODS: Human glenohumeral capsule cells were cultured with 4 type...

Descripción completa

Detalles Bibliográficos
Autores principales: Khoo, John K., Lee, Jae H.T., Lam, Patrick H., Wei, Ai-Qun, Ronquillo, Jonathan, Murrell, George A.C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443838/
https://www.ncbi.nlm.nih.gov/pubmed/30976733
http://dx.doi.org/10.1016/j.jses.2019.01.003
Descripción
Sumario:BACKGROUND: Biodegradable suture anchors are associated with higher redislocation rates. This study examined whether the biocompatibility and/or biomechanical properties of suture anchors contribute to the increase in complications. METHODS: Human glenohumeral capsule cells were cultured with 4 types of suture anchors, Opus LabraFix (titanium alloy; ArthroCare, Austin, TX, USA), PushLock (poly-ether-ether-ketone; Arthrex, Naples, FL, USA), BioKnotless (poly-l-lactic acid; DePuy Mitek, Warsaw, IN, USA), and Suretac II (polyglycolic acid; Smith & Nephew, London, UK), to measure cell viability and pH. Four groups of 6 ovine shoulders were used to repair the labrum, which was completely detached from the glenoid rim anteroinferiorly and reattached with 2 suture anchors and subject to failure load testing. RESULTS: In cell culture, BioKnotless at 48 and 72 hours (85.2% ± 2.1% and 84.5% ± 3.6%) and Suretac II groups (33.9% ± 3.1% and 42.8% ± 6.4%) had fewer viable cells compared with control (P = .048). The pH of Suretac II was lower than control (7.51 to 7.65) at 24 hours (7.31 ± 0.08, P = .049), 48 hours (7.25 ± 0.02, P = .046), and 72 hours (7.29 ± 0.04, P = .04). During mechanical testing, 83% of repairs failed by the capsule tearing. Among the anchors, the BioKnotless repair group had a significantly lower failure load (37 ± 5 N) compared with the PushLock (61 ± 7 N), Opus (60 ± 6 N), and Suretac II (57 ± 7 N) groups (P = .038). CONCLUSION: BioKnotless and Suretac II anchors are cytotoxic. The BioKnotless biodegradable anchor has significantly lower failure load. Absorbable suture anchors may cause higher redislocation of arthroscopic Bankart repair.