Cargando…

Autotaxin is a novel target of microRNA‐101‐3p

Autotaxin (ATX), a vital enzyme that generates lysophosphatidic acid (LPA), affects many biological processes, including tumorigenesis, via the ATX–LPA axis. In this study, we demonstrate that microRNA‐101‐3p (miR‐101‐3p), a well‐known tumor suppressor, downregulates ATX expression at the posttransc...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yuqin, Lyu, Lin, Zhang, Xiaotian, Zhang, Junjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443858/
https://www.ncbi.nlm.nih.gov/pubmed/30984544
http://dx.doi.org/10.1002/2211-5463.12608
Descripción
Sumario:Autotaxin (ATX), a vital enzyme that generates lysophosphatidic acid (LPA), affects many biological processes, including tumorigenesis, via the ATX–LPA axis. In this study, we demonstrate that microRNA‐101‐3p (miR‐101‐3p), a well‐known tumor suppressor, downregulates ATX expression at the posttranscriptional level. We found that miR‐101‐3p inhibits ATX regulation by directly targeting a conserved sequence in the ATX mRNA 3′UTR. Moreover, we observed an inverse correlation between ATX and miR‐101‐3p levels in various types of cancer cells. ATX is highly expressed in several human cancers. Here, we verified that ATX expression is significantly inhibited by miR‐101‐3p in U87 and HCT116 cells. ATX downregulation contributed to the suppression of migration, invasion, and proliferation mediated by miR‐101‐3p; furthermore, the tumor‐suppressing activity of miR‐101‐3p was partially reduced by the addition of LPA in U87 cells. Our data suggest that ATX is a novel target of miR‐101‐3p.