Cargando…
A Space-Variant Visual Pathway Model for Data Efficient Deep Learning
We present an investigation into adopting a model of the retino-cortical mapping, found in biological visual systems, to improve the efficiency of image analysis using Deep Convolutional Neural Nets (DCNNs) in the context of robot vision and egocentric perception systems. This work has now enabled D...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444208/ https://www.ncbi.nlm.nih.gov/pubmed/30971891 http://dx.doi.org/10.3389/fncel.2019.00036 |
_version_ | 1783407986526388224 |
---|---|
author | Ozimek, Piotr Hristozova, Nina Balog, Lorinc Siebert, Jan Paul |
author_facet | Ozimek, Piotr Hristozova, Nina Balog, Lorinc Siebert, Jan Paul |
author_sort | Ozimek, Piotr |
collection | PubMed |
description | We present an investigation into adopting a model of the retino-cortical mapping, found in biological visual systems, to improve the efficiency of image analysis using Deep Convolutional Neural Nets (DCNNs) in the context of robot vision and egocentric perception systems. This work has now enabled DCNNs to process input images approaching one million pixels in size, in real time, using only consumer grade graphics processor (GPU) hardware in a single pass of the DCNN. |
format | Online Article Text |
id | pubmed-6444208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64442082019-04-10 A Space-Variant Visual Pathway Model for Data Efficient Deep Learning Ozimek, Piotr Hristozova, Nina Balog, Lorinc Siebert, Jan Paul Front Cell Neurosci Neuroscience We present an investigation into adopting a model of the retino-cortical mapping, found in biological visual systems, to improve the efficiency of image analysis using Deep Convolutional Neural Nets (DCNNs) in the context of robot vision and egocentric perception systems. This work has now enabled DCNNs to process input images approaching one million pixels in size, in real time, using only consumer grade graphics processor (GPU) hardware in a single pass of the DCNN. Frontiers Media S.A. 2019-03-26 /pmc/articles/PMC6444208/ /pubmed/30971891 http://dx.doi.org/10.3389/fncel.2019.00036 Text en Copyright © 2019 Ozimek, Hristozova, Balog and Siebert. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Ozimek, Piotr Hristozova, Nina Balog, Lorinc Siebert, Jan Paul A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title | A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_full | A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_fullStr | A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_full_unstemmed | A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_short | A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_sort | space-variant visual pathway model for data efficient deep learning |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444208/ https://www.ncbi.nlm.nih.gov/pubmed/30971891 http://dx.doi.org/10.3389/fncel.2019.00036 |
work_keys_str_mv | AT ozimekpiotr aspacevariantvisualpathwaymodelfordataefficientdeeplearning AT hristozovanina aspacevariantvisualpathwaymodelfordataefficientdeeplearning AT baloglorinc aspacevariantvisualpathwaymodelfordataefficientdeeplearning AT siebertjanpaul aspacevariantvisualpathwaymodelfordataefficientdeeplearning AT ozimekpiotr spacevariantvisualpathwaymodelfordataefficientdeeplearning AT hristozovanina spacevariantvisualpathwaymodelfordataefficientdeeplearning AT baloglorinc spacevariantvisualpathwaymodelfordataefficientdeeplearning AT siebertjanpaul spacevariantvisualpathwaymodelfordataefficientdeeplearning |