Cargando…
Feature Selection for Longitudinal Data by Using Sign Averages to Summarize Gene Expression Values over Time
With the rapid evolution of high-throughput technologies, time series/longitudinal high-throughput experiments have become possible and affordable. However, the development of statistical methods dealing with gene expression profiles across time points has not kept up with the explosion of such data...
Autores principales: | Tian, Suyan, Wang, Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444255/ https://www.ncbi.nlm.nih.gov/pubmed/31016185 http://dx.doi.org/10.1155/2019/1724898 |
Ejemplares similares
-
A longitudinal feature selection method identifies relevant genes to distinguish complicated injury and uncomplicated injury over time
por: Tian, Suyan, et al.
Publicado: (2018) -
To select relevant features for longitudinal gene expression data by extending a pathway analysis method
por: Tian, Suyan, et al.
Publicado: (2018) -
Summarizing the extent of visit irregularity in longitudinal data
por: Lokku, Armend, et al.
Publicado: (2020) -
GEE-TGDR: A Longitudinal Feature Selection Algorithm and Its Application to lncRNA Expression Profiles for Psoriasis Patients Treated with Immune Therapies
por: Tian, Suyan, et al.
Publicado: (2021) -
An ensemble of the iCluster method to analyze longitudinal lncRNA expression data for psoriasis patients
por: Tian, Suyan, et al.
Publicado: (2021)