Cargando…

Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neu...

Descripción completa

Detalles Bibliográficos
Autores principales: Wunderlich, Timo, Kungl, Akos F., Müller, Eric, Hartel, Andreas, Stradmann, Yannik, Aamir, Syed Ahmed, Grübl, Andreas, Heimbrecht, Arthur, Schreiber, Korbinian, Stöckel, David, Pehle, Christian, Billaudelle, Sebastian, Kiene, Gerd, Mauch, Christian, Schemmel, Johannes, Meier, Karlheinz, Petrovici, Mihai A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444279/
https://www.ncbi.nlm.nih.gov/pubmed/30971881
http://dx.doi.org/10.3389/fnins.2019.00260
_version_ 1783408003732471808
author Wunderlich, Timo
Kungl, Akos F.
Müller, Eric
Hartel, Andreas
Stradmann, Yannik
Aamir, Syed Ahmed
Grübl, Andreas
Heimbrecht, Arthur
Schreiber, Korbinian
Stöckel, David
Pehle, Christian
Billaudelle, Sebastian
Kiene, Gerd
Mauch, Christian
Schemmel, Johannes
Meier, Karlheinz
Petrovici, Mihai A.
author_facet Wunderlich, Timo
Kungl, Akos F.
Müller, Eric
Hartel, Andreas
Stradmann, Yannik
Aamir, Syed Ahmed
Grübl, Andreas
Heimbrecht, Arthur
Schreiber, Korbinian
Stöckel, David
Pehle, Christian
Billaudelle, Sebastian
Kiene, Gerd
Mauch, Christian
Schemmel, Johannes
Meier, Karlheinz
Petrovici, Mihai A.
author_sort Wunderlich, Timo
collection PubMed
description Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play a simplified version of the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57 mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.
format Online
Article
Text
id pubmed-6444279
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-64442792019-04-10 Demonstrating Advantages of Neuromorphic Computation: A Pilot Study Wunderlich, Timo Kungl, Akos F. Müller, Eric Hartel, Andreas Stradmann, Yannik Aamir, Syed Ahmed Grübl, Andreas Heimbrecht, Arthur Schreiber, Korbinian Stöckel, David Pehle, Christian Billaudelle, Sebastian Kiene, Gerd Mauch, Christian Schemmel, Johannes Meier, Karlheinz Petrovici, Mihai A. Front Neurosci Neuroscience Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play a simplified version of the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57 mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons. Frontiers Media S.A. 2019-03-26 /pmc/articles/PMC6444279/ /pubmed/30971881 http://dx.doi.org/10.3389/fnins.2019.00260 Text en Copyright © 2019 Wunderlich, Kungl, Müller, Hartel, Stradmann, Aamir, Grübl, Heimbrecht, Schreiber, Stöckel, Pehle, Billaudelle, Kiene, Mauch, Schemmel, Meier and Petrovici. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Wunderlich, Timo
Kungl, Akos F.
Müller, Eric
Hartel, Andreas
Stradmann, Yannik
Aamir, Syed Ahmed
Grübl, Andreas
Heimbrecht, Arthur
Schreiber, Korbinian
Stöckel, David
Pehle, Christian
Billaudelle, Sebastian
Kiene, Gerd
Mauch, Christian
Schemmel, Johannes
Meier, Karlheinz
Petrovici, Mihai A.
Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
title Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
title_full Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
title_fullStr Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
title_full_unstemmed Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
title_short Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
title_sort demonstrating advantages of neuromorphic computation: a pilot study
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444279/
https://www.ncbi.nlm.nih.gov/pubmed/30971881
http://dx.doi.org/10.3389/fnins.2019.00260
work_keys_str_mv AT wunderlichtimo demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT kunglakosf demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT mullereric demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT hartelandreas demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT stradmannyannik demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT aamirsyedahmed demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT grublandreas demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT heimbrechtarthur demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT schreiberkorbinian demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT stockeldavid demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT pehlechristian demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT billaudellesebastian demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT kienegerd demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT mauchchristian demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT schemmeljohannes demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT meierkarlheinz demonstratingadvantagesofneuromorphiccomputationapilotstudy
AT petrovicimihaia demonstratingadvantagesofneuromorphiccomputationapilotstudy