Cargando…
Bayesian computational markers of relapse in methamphetamine dependence
Methamphetamine use disorder is associated with a high likelihood of relapse. Identifying robust predictors of relapse that have explanatory power is critical to develop secondary prevention based on a mechanistic understanding of relapse. Computational approaches have the potential to identify such...
Autores principales: | Harlé, Katia M., Yu, Angela J., Paulus, Martin P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444286/ https://www.ncbi.nlm.nih.gov/pubmed/30928810 http://dx.doi.org/10.1016/j.nicl.2019.101794 |
Ejemplares similares
-
Altered Statistical Learning and Decision-Making in Methamphetamine Dependence: Evidence from a Two-Armed Bandit Task
por: Harlé, Katia M., et al.
Publicado: (2015) -
Neurofunctional Differences Related to Methamphetamine and Sexual Cues in Men With Shorter and Longer Term Abstinence Methamphetamine Dependence
por: Chen, Shubao, et al.
Publicado: (2019) -
Using neuroimaging to predict relapse in stimulant dependence: A comparison of linear and machine learning models
por: Gowin, Joshua L., et al.
Publicado: (2019) -
Effects of HIV Infection, methamphetamine dependence and age on cortical thickness, area and volume
por: MacDuffie, Katherine E., et al.
Publicado: (2018) -
Methamphetamine dependence with and without psychotic symptoms: A multi-modal brain imaging study
por: Vuletic, Daniella, et al.
Publicado: (2018)