Cargando…

Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer

The aim of the present study was to investigate candidate genes for chemoradiotherapy (CRT) sensitivity in patients with locally advanced rectal cancer (LARC), and the potential mechanisms of their action. A microarray dataset (GSE98959) was obtained from the Gene Expression Omnibus database that in...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chunsheng, E, Changyong, Zhou, Yangyang, Yu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444485/
https://www.ncbi.nlm.nih.gov/pubmed/30944639
http://dx.doi.org/10.3892/ol.2019.10087
_version_ 1783408037906612224
author Li, Chunsheng
E, Changyong
Zhou, Yangyang
Yu, Wei
author_facet Li, Chunsheng
E, Changyong
Zhou, Yangyang
Yu, Wei
author_sort Li, Chunsheng
collection PubMed
description The aim of the present study was to investigate candidate genes for chemoradiotherapy (CRT) sensitivity in patients with locally advanced rectal cancer (LARC), and the potential mechanisms of their action. A microarray dataset (GSE98959) was obtained from the Gene Expression Omnibus database that included microRNA (miRNA, miR) expression profiling of 22 samples from patients with LARC who had received preoperative radiotherapy and chemotherapy. Of these patients, 10 responded to the treatment and 12 did not. Differentially expressed miRNAs (DEMs) were identified, followed by the construction of an miRNA-gene network. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) function analyses were performed on the target genes in the miRNA-gene network. Furthermore, a protein-protein interaction (PPI) network was constructed on the basis of the target genes, followed by GO function enrichment and KEGG pathway analysis. A total of 30 DEMs were identified between the responder and non-responder groups. Thiamine metabolism (including miR-371a-3p) was the pathway with the highest enrichment of DEMs. The pathway that was most markedly enriched in the target genes of upregulated miRNAs was the pluripotency of stem cells pathway, as indicated by phosphoinositide-4,5-bisphosphate 3-kinase γ (PIK3CG) and anaphase-promoting complex subunit 2 (APC2). Pathways in cancer exhibited the highest enrichment in the set of target genes of downregulated miRNAs. KEGG pathway and GO function analysis indicated that target genes in the PPI network were enriched in the glioma pathway and assembled in the intracellular signaling cascade function, as indicated by the proto-oncogene NRAS. miR-371a-3p may be a candidate miRNA for CRT sensitivity in LARC via the thiamine metabolism pathway. PIK3CG and APC2 may contribute to CRT sensitivity via signaling pathways regulating the pluripotency of stem cells. Furthermore, NRAS may serve an important role in mediating CRT sensitivity via an intracellular signaling cascade.
format Online
Article
Text
id pubmed-6444485
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-64444852019-04-03 Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer Li, Chunsheng E, Changyong Zhou, Yangyang Yu, Wei Oncol Lett Articles The aim of the present study was to investigate candidate genes for chemoradiotherapy (CRT) sensitivity in patients with locally advanced rectal cancer (LARC), and the potential mechanisms of their action. A microarray dataset (GSE98959) was obtained from the Gene Expression Omnibus database that included microRNA (miRNA, miR) expression profiling of 22 samples from patients with LARC who had received preoperative radiotherapy and chemotherapy. Of these patients, 10 responded to the treatment and 12 did not. Differentially expressed miRNAs (DEMs) were identified, followed by the construction of an miRNA-gene network. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) function analyses were performed on the target genes in the miRNA-gene network. Furthermore, a protein-protein interaction (PPI) network was constructed on the basis of the target genes, followed by GO function enrichment and KEGG pathway analysis. A total of 30 DEMs were identified between the responder and non-responder groups. Thiamine metabolism (including miR-371a-3p) was the pathway with the highest enrichment of DEMs. The pathway that was most markedly enriched in the target genes of upregulated miRNAs was the pluripotency of stem cells pathway, as indicated by phosphoinositide-4,5-bisphosphate 3-kinase γ (PIK3CG) and anaphase-promoting complex subunit 2 (APC2). Pathways in cancer exhibited the highest enrichment in the set of target genes of downregulated miRNAs. KEGG pathway and GO function analysis indicated that target genes in the PPI network were enriched in the glioma pathway and assembled in the intracellular signaling cascade function, as indicated by the proto-oncogene NRAS. miR-371a-3p may be a candidate miRNA for CRT sensitivity in LARC via the thiamine metabolism pathway. PIK3CG and APC2 may contribute to CRT sensitivity via signaling pathways regulating the pluripotency of stem cells. Furthermore, NRAS may serve an important role in mediating CRT sensitivity via an intracellular signaling cascade. D.A. Spandidos 2019-05 2019-02-28 /pmc/articles/PMC6444485/ /pubmed/30944639 http://dx.doi.org/10.3892/ol.2019.10087 Text en Copyright: © Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Li, Chunsheng
E, Changyong
Zhou, Yangyang
Yu, Wei
Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer
title Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer
title_full Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer
title_fullStr Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer
title_full_unstemmed Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer
title_short Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer
title_sort candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444485/
https://www.ncbi.nlm.nih.gov/pubmed/30944639
http://dx.doi.org/10.3892/ol.2019.10087
work_keys_str_mv AT lichunsheng candidategenesandpotentialmechanismsforchemoradiotherapysensitivityinlocallyadvancedrectalcancer
AT echangyong candidategenesandpotentialmechanismsforchemoradiotherapysensitivityinlocallyadvancedrectalcancer
AT zhouyangyang candidategenesandpotentialmechanismsforchemoradiotherapysensitivityinlocallyadvancedrectalcancer
AT yuwei candidategenesandpotentialmechanismsforchemoradiotherapysensitivityinlocallyadvancedrectalcancer