Cargando…

Spatial and spectral trajectories in typical neurodevelopment from childhood to middle age

Detailed characterization of typical human neurodevelopment is key if we are to understand the nature of mental and neurological pathology. While research on the cellular processes of neurodevelopment has made great advances, in vivo human imaging is crucial to understand our uniquely human capabili...

Descripción completa

Detalles Bibliográficos
Autores principales: Hunt, Benjamin A. E., Wong, Simeon M., Vandewouw, Marlee M., Brookes, Matthew J., Dunkley, Benjamin T., Taylor, Margot J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MIT Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444935/
https://www.ncbi.nlm.nih.gov/pubmed/30984904
http://dx.doi.org/10.1162/netn_a_00077
Descripción
Sumario:Detailed characterization of typical human neurodevelopment is key if we are to understand the nature of mental and neurological pathology. While research on the cellular processes of neurodevelopment has made great advances, in vivo human imaging is crucial to understand our uniquely human capabilities, as well as the pathologies that affect them. Using magnetoencephalography data in the largest normative sample currently available (324 participants aged 6–45 years), we assess the developmental trajectory of resting-state oscillatory power and functional connectivity from childhood to middle age. The maturational course of power, indicative of local processing, was found to both increase and decrease in a spectrally dependent fashion. Using the strength of phase-synchrony between parcellated regions, we found significant linear and nonlinear (quadratic and logarithmic) trajectories to be characterized in a spatially heterogeneous frequency-specific manner, such as a superior frontal region with linear and nonlinear trajectories in theta and gamma band respectively. Assessment of global efficiency revealed similar significant nonlinear trajectories across all frequency bands. Our results link with the development of human cognitive abilities; they also highlight the complexity of neurodevelopment and provide quantitative parameters for replication and a robust footing from which clinical research may map pathological deviations from these typical trajectories.