Cargando…
Resonant pitch and roll silicon gyroscopes with sub-micron-gap slanted electrodes: Breaking the barrier toward high-performance monolithic inertial measurement units
This paper presents the design, fabrication, and characterization of a novel high quality factor (Q) resonant pitch/roll gyroscope implemented in a 40 μm (100) silicon-on-insulator (SOI) substrate without using the deep reactive-ion etching (DRIE) process. The featured silicon gyroscope has a mode-m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445014/ https://www.ncbi.nlm.nih.gov/pubmed/31057855 http://dx.doi.org/10.1038/micronano.2016.92 |
Sumario: | This paper presents the design, fabrication, and characterization of a novel high quality factor (Q) resonant pitch/roll gyroscope implemented in a 40 μm (100) silicon-on-insulator (SOI) substrate without using the deep reactive-ion etching (DRIE) process. The featured silicon gyroscope has a mode-matched operating frequency of 200 kHz and is the first out-of-plane pitch/roll gyroscope with electrostatic quadrature tuning capability to fully compensate for fabrication non-idealities and variation in SOI thickness. The quadrature tuning is enabled by slanted electrodes with sub-micron capacitive gaps along the (111) plane created by an anisotropic wet etching. The quadrature cancellation enables a 20-fold improvement in the scale factor for a typical fabricated device. Noise measurement of quadrature-cancelled mode-matched devices shows an angle random walk (ARW) of 0.63° √h(−1) and a bias instability of 37.7° h(−1), partially limited by the noise of the interface electronics. The elimination of silicon DRIE in the anisotropically wet-etched gyroscope improves the gyroscope robustness against the process variation and reduces the fabrication costs. The use of a slanted electrode for quadrature tuning demonstrates an effective path to reach high-performance in future pitch and roll gyroscope designs for the implementation of single-chip high-precision inertial measurement units (IMUs). |
---|