Cargando…
β-CA-specific inhibitor dithiocarbamate Fc14–584B: a novel antimycobacterial agent with potential to treat drug-resistant tuberculosis
Inhibition of novel biological pathways in Mycobacterium tuberculosis (Mtb) creates the potential for alternative approaches for treating drug-resistant tuberculosis. In vitro studies have shown that dithiocarbamate-derived β-carbonic anhydrase (β-CA) inhibitors Fc14–594 A and Fc14–584B effectively...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445161/ https://www.ncbi.nlm.nih.gov/pubmed/28629306 http://dx.doi.org/10.1080/14756366.2017.1332056 |
Sumario: | Inhibition of novel biological pathways in Mycobacterium tuberculosis (Mtb) creates the potential for alternative approaches for treating drug-resistant tuberculosis. In vitro studies have shown that dithiocarbamate-derived β-carbonic anhydrase (β-CA) inhibitors Fc14–594 A and Fc14–584B effectively inhibit the activity of Mtb β-CA enzymes. We screened the dithiocarbamates for toxicity, and studied the in vivo inhibitory effect of the least toxic inhibitor on M. marinum in a zebrafish model. In our toxicity screening, Fc14–584B emerged as the least toxic and showed minimal toxicity in 5-day-old larvae at 300 µM concentration. In vitro inhibition of M. marinum showed that both compounds inhibited growth at a concentration of 75 µM. In vivo inhibition studies using 300 µM Fc14–584B showed significant (p > .05) impairment of bacterial growth in zebrafish larvae at 6 days post infection. Our studies highlight the therapeutic potential of Fc14–584B as a β-CA inhibitor against Mtb, and that dithiocarbamate compounds may be developed into potent anti-tuberculosis drugs. |
---|