Cargando…

VEGFR-2 inhibitors and apoptosis inducers: synthesis and molecular design of new benzo[g]quinazolin bearing benzenesulfonamide moiety

Two series of novel 4-(2-(2-(2-(substituted) hydrazinyl)-2-oxoethylthio)-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 5–17 and 4-(2-(2-(substituted-1H-pyrazol-1-yl)-2-oxoethylthio)-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 18–24 were synthesised from the starting material 4-(2-(2-...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghorab, Mostafa M., Alsaid, Mansour S., Soliman, Aiten M., Ragab, Fatma A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445170/
https://www.ncbi.nlm.nih.gov/pubmed/28661197
http://dx.doi.org/10.1080/14756366.2017.1334650
Descripción
Sumario:Two series of novel 4-(2-(2-(2-(substituted) hydrazinyl)-2-oxoethylthio)-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 5–17 and 4-(2-(2-(substituted-1H-pyrazol-1-yl)-2-oxoethylthio)-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 18–24 were synthesised from the starting material 4-(2-(2-hydrazinyl-2-oxoethylthio)-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 5, to be evaluated for their inhibitory activity towards VEGFR-2. The target compounds 5–24, were screened for their cytotoxic activity against MCF-7 breast cancer cell line and the percentage inhibition against VEGFR-2. Compounds 9, 20, 22 and 23, showed excellent VEGFR-2 inhibitory activity with IC(50) ranging from 0.64 to 1.04 µm. Being the most potent, compound 9 was evaluated for its apoptotic inducer effect by studying the effect on caspase-3, it was found to increase its level. Compound 9 boosted the level of Bax and reduced the level of BCl2, compared to the control. Cell cycle analysis was conducted, compound 9 showed cell cycle arrest at G2/M phase. Moreover, mild cytotoxic effect (IC(50) = 29.41 µm, respectively) in normal breast cells MCF-12 A, was observed when treated with the same compound. Finally, a molecular docking study was performed to investigate the possible binding interaction inside the active site of the VEGFR-2 enzyme.