Cargando…
From networks to optimal higher-order models of complex systems
Rich data is revealing that complex dependencies between the nodes of a network may escape models based on pairwise interactions. Higher-order network models go beyond these limitations, offering new perspectives for understanding complex systems.
Autores principales: | Lambiotte, Renaud, Rosvall, Martin, Scholtes, Ingo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445364/ https://www.ncbi.nlm.nih.gov/pubmed/30956684 http://dx.doi.org/10.1038/s41567-019-0459-y |
Ejemplares similares
-
Using higher-order Markov models to reveal flow-based communities in networks
por: Salnikov, Vsevolod, et al.
Publicado: (2016) -
The many facets of community detection in complex networks
por: Schaub, Michael T., et al.
Publicado: (2017) -
Predicting variable-length paths in networked systems using multi-order generative models
por: Gote, Christoph, et al.
Publicado: (2023) -
Locating community smells in software development processes using higher-order network centralities
por: Gote, Christoph, et al.
Publicado: (2023) -
Fragility Induced by Interdependency of Complex Networks and Their Higher-Order Networks
por: Zhang, Chengjun, et al.
Publicado: (2022)