Cargando…
Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy
Prevalence is a common epidemiological measure for assessing soil-transmitted helminth burden and forms the basis for much public-health decision-making. Standard diagnostic techniques are based on egg detection in stool samples through microscopy and these techniques are known to have poor sensitiv...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445468/ https://www.ncbi.nlm.nih.gov/pubmed/30897089 http://dx.doi.org/10.1371/journal.pntd.0007196 |
_version_ | 1783408201233858560 |
---|---|
author | Truscott, James E. Dunn, Julia C. Papaiakovou, Marina Schaer, Fabian Werkman, Marleen Littlewood, D. Timothy J. Walson, Judd L. Anderson, Roy M. |
author_facet | Truscott, James E. Dunn, Julia C. Papaiakovou, Marina Schaer, Fabian Werkman, Marleen Littlewood, D. Timothy J. Walson, Judd L. Anderson, Roy M. |
author_sort | Truscott, James E. |
collection | PubMed |
description | Prevalence is a common epidemiological measure for assessing soil-transmitted helminth burden and forms the basis for much public-health decision-making. Standard diagnostic techniques are based on egg detection in stool samples through microscopy and these techniques are known to have poor sensitivity for individuals with low infection intensity, leading to poor sensitivity in low prevalence populations. PCR diagnostic techniques offer very high sensitivities even at low prevalence, but at a greater cost for each diagnostic test in terms of equipment needed and technician time and training. Pooling of samples can allow prevalence to be estimated while minimizing the number of tests performed. We develop a model of the relative cost of pooling to estimate prevalence, compared to the direct approach of testing all samples individually. Analysis shows how expected relative cost depends on both the underlying prevalence in the population and the size of the pools constructed. A critical prevalence level (approx. 31%) above which pooling is never cost effective, independent of pool size. When no prevalence information is available, there is no basis on which to choose between pooling and testing all samples individually. We recast our model of relative cost in a Bayesian framework in order to investigate how prior information about prevalence in a given population can be used to inform the decision to choose either pooling or full testing. Results suggest that if prevalence is below 10%, a relatively small exploratory prevalence survey (10–15 samples) can be sufficient to give a high degree of certainty that pooling may be relatively cost effective. |
format | Online Article Text |
id | pubmed-6445468 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-64454682019-04-17 Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy Truscott, James E. Dunn, Julia C. Papaiakovou, Marina Schaer, Fabian Werkman, Marleen Littlewood, D. Timothy J. Walson, Judd L. Anderson, Roy M. PLoS Negl Trop Dis Research Article Prevalence is a common epidemiological measure for assessing soil-transmitted helminth burden and forms the basis for much public-health decision-making. Standard diagnostic techniques are based on egg detection in stool samples through microscopy and these techniques are known to have poor sensitivity for individuals with low infection intensity, leading to poor sensitivity in low prevalence populations. PCR diagnostic techniques offer very high sensitivities even at low prevalence, but at a greater cost for each diagnostic test in terms of equipment needed and technician time and training. Pooling of samples can allow prevalence to be estimated while minimizing the number of tests performed. We develop a model of the relative cost of pooling to estimate prevalence, compared to the direct approach of testing all samples individually. Analysis shows how expected relative cost depends on both the underlying prevalence in the population and the size of the pools constructed. A critical prevalence level (approx. 31%) above which pooling is never cost effective, independent of pool size. When no prevalence information is available, there is no basis on which to choose between pooling and testing all samples individually. We recast our model of relative cost in a Bayesian framework in order to investigate how prior information about prevalence in a given population can be used to inform the decision to choose either pooling or full testing. Results suggest that if prevalence is below 10%, a relatively small exploratory prevalence survey (10–15 samples) can be sufficient to give a high degree of certainty that pooling may be relatively cost effective. Public Library of Science 2019-03-21 /pmc/articles/PMC6445468/ /pubmed/30897089 http://dx.doi.org/10.1371/journal.pntd.0007196 Text en © 2019 Truscott et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Truscott, James E. Dunn, Julia C. Papaiakovou, Marina Schaer, Fabian Werkman, Marleen Littlewood, D. Timothy J. Walson, Judd L. Anderson, Roy M. Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy |
title | Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy |
title_full | Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy |
title_fullStr | Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy |
title_full_unstemmed | Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy |
title_short | Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy |
title_sort | calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: choosing and optimizing the pooling strategy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445468/ https://www.ncbi.nlm.nih.gov/pubmed/30897089 http://dx.doi.org/10.1371/journal.pntd.0007196 |
work_keys_str_mv | AT truscottjamese calculatingtheprevalenceofsoiltransmittedhelminthinfectionthroughpoolingofstoolsampleschoosingandoptimizingthepoolingstrategy AT dunnjuliac calculatingtheprevalenceofsoiltransmittedhelminthinfectionthroughpoolingofstoolsampleschoosingandoptimizingthepoolingstrategy AT papaiakovoumarina calculatingtheprevalenceofsoiltransmittedhelminthinfectionthroughpoolingofstoolsampleschoosingandoptimizingthepoolingstrategy AT schaerfabian calculatingtheprevalenceofsoiltransmittedhelminthinfectionthroughpoolingofstoolsampleschoosingandoptimizingthepoolingstrategy AT werkmanmarleen calculatingtheprevalenceofsoiltransmittedhelminthinfectionthroughpoolingofstoolsampleschoosingandoptimizingthepoolingstrategy AT littlewooddtimothyj calculatingtheprevalenceofsoiltransmittedhelminthinfectionthroughpoolingofstoolsampleschoosingandoptimizingthepoolingstrategy AT walsonjuddl calculatingtheprevalenceofsoiltransmittedhelminthinfectionthroughpoolingofstoolsampleschoosingandoptimizingthepoolingstrategy AT andersonroym calculatingtheprevalenceofsoiltransmittedhelminthinfectionthroughpoolingofstoolsampleschoosingandoptimizingthepoolingstrategy |