Cargando…
Quantitative Boltzmann–Gibbs Principles via Orthogonal Polynomial Duality
We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of...
Autores principales: | Ayala, Mario, Carinci, Gioia, Redig, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445507/ https://www.ncbi.nlm.nih.gov/pubmed/31007279 http://dx.doi.org/10.1007/s10955-018-2060-7 |
Ejemplares similares
-
Jaynes-Gibbs Entropic Convex Duals and Orthogonal Polynomials
por: Le Blanc, Richard
Publicado: (2022) -
Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere
por: Tsallis, Constantino
Publicado: (2019) -
Orthogonal polynomials
por: Szegő, G
Publicado: (1939) -
Orthogonal polynomials
por: Nevai, Paul G
Publicado: (1979) -
Orthogonal polynomials
por: Szegö, Gabor P
Publicado: (1975)