Cargando…

Evolution of our understanding of cell volume regulation by the pump-leak mechanism

All animal cells are surrounded by a flexible plasma membrane that is permeable to water and to small ions. Cells thus face a fundamental problem: the considerable tension that their membranes would experience if the osmotic influx of water, driven by the presence of impermeant intracellular ions, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Kay, Alan R., Blaustein, Mordecai P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445581/
https://www.ncbi.nlm.nih.gov/pubmed/30782603
http://dx.doi.org/10.1085/jgp.201812274
Descripción
Sumario:All animal cells are surrounded by a flexible plasma membrane that is permeable to water and to small ions. Cells thus face a fundamental problem: the considerable tension that their membranes would experience if the osmotic influx of water, driven by the presence of impermeant intracellular ions, was left unopposed. The pivotal study that described the cell’s remedy for this impending osmotic catastrophe—the “pump-leak mechanism” (PLM)—was published in the Journal of General Physiology by Tosteson and Hoffman in 1960. Their work revealed how the sodium pump stabilizes cell volume by eliminating the osmotic gradient. Here we describe the mechanistic basis of the PLM, trace the history of its discovery, and place it into the context of our current understanding.