Cargando…
Stretch in Focus: 2D Inplane Cell Stretch Systems for Studies of Cardiac Mechano-Signaling
Mechanobiology is a rapidly growing interdisciplinary research field, involving biophysics, molecular and cell biology, biomedical engineering, and medicine. Rapid progress has been possible due to emerging devices and tools engineered for studies of the effect of mechanical forces, such as stretch...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445849/ https://www.ncbi.nlm.nih.gov/pubmed/30972334 http://dx.doi.org/10.3389/fbioe.2019.00055 |
_version_ | 1783408254212112384 |
---|---|
author | Friedrich, Oliver Merten, Anna-Lena Schneidereit, Dominik Guo, Yang Schürmann, Sebastian Martinac, Boris |
author_facet | Friedrich, Oliver Merten, Anna-Lena Schneidereit, Dominik Guo, Yang Schürmann, Sebastian Martinac, Boris |
author_sort | Friedrich, Oliver |
collection | PubMed |
description | Mechanobiology is a rapidly growing interdisciplinary research field, involving biophysics, molecular and cell biology, biomedical engineering, and medicine. Rapid progress has been possible due to emerging devices and tools engineered for studies of the effect of mechanical forces, such as stretch or shear force, impacting on biological cells and tissues. In response to such mechanical stimuli, cells possess various mechanosensors among which mechanosensitive ion channels are molecular transducers designed to convert mechanical stimuli into electrical and/or biochemical intracellular signals on millisecond time scales. To study their role in cellular signaling pathways, devices have been engineered that enable application of different strain protocols to cells allowing for determination of the stress-strain relationship or other, preferably optical, readouts. Frequently, these devices are mounted on fluorescence microscopes, allowing simultaneous investigation of cellular mechanotransduction processes combined with live-cell imaging. Mechanical stress in organs/tissues can be complex and multiaxial, e.g., in hollow organs, like lung alveoli, bladder, or the heart. Therefore, biomedical engineers have, in recent years, developed devices based on elastomeric membranes for application of biaxial or multiaxial stretch to 2D substrate-adhered or even 3D-embedded cells. Here, we review application of stretch technologies to cellular mechanotransduction with a focus on cardiovascular systems. We also present new results obtained by our IsoStretcher device to examine mechanosensitivity of adult ventricular cardiomyocytes. We show that sudden isotropic stretch of cardiomyocytes can already trigger arrhythmic Ca(2+) transients on the single cell level. |
format | Online Article Text |
id | pubmed-6445849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64458492019-04-10 Stretch in Focus: 2D Inplane Cell Stretch Systems for Studies of Cardiac Mechano-Signaling Friedrich, Oliver Merten, Anna-Lena Schneidereit, Dominik Guo, Yang Schürmann, Sebastian Martinac, Boris Front Bioeng Biotechnol Bioengineering and Biotechnology Mechanobiology is a rapidly growing interdisciplinary research field, involving biophysics, molecular and cell biology, biomedical engineering, and medicine. Rapid progress has been possible due to emerging devices and tools engineered for studies of the effect of mechanical forces, such as stretch or shear force, impacting on biological cells and tissues. In response to such mechanical stimuli, cells possess various mechanosensors among which mechanosensitive ion channels are molecular transducers designed to convert mechanical stimuli into electrical and/or biochemical intracellular signals on millisecond time scales. To study their role in cellular signaling pathways, devices have been engineered that enable application of different strain protocols to cells allowing for determination of the stress-strain relationship or other, preferably optical, readouts. Frequently, these devices are mounted on fluorescence microscopes, allowing simultaneous investigation of cellular mechanotransduction processes combined with live-cell imaging. Mechanical stress in organs/tissues can be complex and multiaxial, e.g., in hollow organs, like lung alveoli, bladder, or the heart. Therefore, biomedical engineers have, in recent years, developed devices based on elastomeric membranes for application of biaxial or multiaxial stretch to 2D substrate-adhered or even 3D-embedded cells. Here, we review application of stretch technologies to cellular mechanotransduction with a focus on cardiovascular systems. We also present new results obtained by our IsoStretcher device to examine mechanosensitivity of adult ventricular cardiomyocytes. We show that sudden isotropic stretch of cardiomyocytes can already trigger arrhythmic Ca(2+) transients on the single cell level. Frontiers Media S.A. 2019-03-27 /pmc/articles/PMC6445849/ /pubmed/30972334 http://dx.doi.org/10.3389/fbioe.2019.00055 Text en Copyright © 2019 Friedrich, Merten, Schneidereit, Guo, Schürmann and Martinac. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Friedrich, Oliver Merten, Anna-Lena Schneidereit, Dominik Guo, Yang Schürmann, Sebastian Martinac, Boris Stretch in Focus: 2D Inplane Cell Stretch Systems for Studies of Cardiac Mechano-Signaling |
title | Stretch in Focus: 2D Inplane Cell Stretch Systems for Studies of Cardiac Mechano-Signaling |
title_full | Stretch in Focus: 2D Inplane Cell Stretch Systems for Studies of Cardiac Mechano-Signaling |
title_fullStr | Stretch in Focus: 2D Inplane Cell Stretch Systems for Studies of Cardiac Mechano-Signaling |
title_full_unstemmed | Stretch in Focus: 2D Inplane Cell Stretch Systems for Studies of Cardiac Mechano-Signaling |
title_short | Stretch in Focus: 2D Inplane Cell Stretch Systems for Studies of Cardiac Mechano-Signaling |
title_sort | stretch in focus: 2d inplane cell stretch systems for studies of cardiac mechano-signaling |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445849/ https://www.ncbi.nlm.nih.gov/pubmed/30972334 http://dx.doi.org/10.3389/fbioe.2019.00055 |
work_keys_str_mv | AT friedricholiver stretchinfocus2dinplanecellstretchsystemsforstudiesofcardiacmechanosignaling AT mertenannalena stretchinfocus2dinplanecellstretchsystemsforstudiesofcardiacmechanosignaling AT schneidereitdominik stretchinfocus2dinplanecellstretchsystemsforstudiesofcardiacmechanosignaling AT guoyang stretchinfocus2dinplanecellstretchsystemsforstudiesofcardiacmechanosignaling AT schurmannsebastian stretchinfocus2dinplanecellstretchsystemsforstudiesofcardiacmechanosignaling AT martinacboris stretchinfocus2dinplanecellstretchsystemsforstudiesofcardiacmechanosignaling |