Cargando…
A Delay Learning Algorithm Based on Spike Train Kernels for Spiking Neurons
Neuroscience research confirms that the synaptic delays are not constant, but can be modulated. This paper proposes a supervised delay learning algorithm for spiking neurons with temporal encoding, in which both the weight and delay of a synaptic connection can be adjusted to enhance the learning pe...
Autores principales: | Wang, Xiangwen, Lin, Xianghong, Dang, Xiaochao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445871/ https://www.ncbi.nlm.nih.gov/pubmed/30971877 http://dx.doi.org/10.3389/fnins.2019.00252 |
Ejemplares similares
-
Supervised Learning Algorithm for Multilayer Spiking Neural Networks with Long-Term Memory Spike Response Model
por: Lin, Xianghong, et al.
Publicado: (2021) -
Supervised Learning Algorithm Based on Spike Train Inner Product for Deep Spiking Neural Networks
por: Lin, Xianghong, et al.
Publicado: (2023) -
Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels
por: Afshar, Saeed, et al.
Publicado: (2014) -
The adaptation of spike backpropagation delays in cortical neurons
por: Buskila, Yossi, et al.
Publicado: (2013) -
Fitting Neuron Models to Spike Trains
por: Rossant, Cyrille, et al.
Publicado: (2011)