Cargando…
Autoencoder Based Feature Selection Method for Classification of Anticancer Drug Response
Anticancer drug responses can be varied for individual patients. This difference is mainly caused by genetic reasons, like mutations and RNA expression. Thus, these genetic features are often used to construct classification models to predict the drug response. This research focuses on the feature s...
Autores principales: | Xu, Xiaolu, Gu, Hong, Wang, Yang, Wang, Jia, Qin, Pan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445890/ https://www.ncbi.nlm.nih.gov/pubmed/30972101 http://dx.doi.org/10.3389/fgene.2019.00233 |
Ejemplares similares
-
Gamma distribution based predicting model for breast cancer drug response based on multi-layer feature selection
por: Cui, Tongtong, et al.
Publicado: (2023) -
Interpretable Feature Generation in ECG Using a Variational Autoencoder
por: Kuznetsov, V. V., et al.
Publicado: (2021) -
FI-Net: Identification of Cancer Driver Genes by Using Functional Impact Prediction Neural Network
por: Gu, Hong, et al.
Publicado: (2020) -
Corrigendum: FI-Net: Identification of Cancer Driver Genes by Using Functional Impact Prediction Neural Network
por: Gu, Hong, et al.
Publicado: (2021) -
Prediction of Drug-Likeness Using Deep Autoencoder Neural Networks
por: Hu, Qiwan, et al.
Publicado: (2018)