Cargando…
Radiomics and Machine Learning for Radiotherapy in Head and Neck Cancers
Introduction: An increasing number of parameters can be considered when making decisions in oncology. Tumor characteristics can also be extracted from imaging through the use of radiomics and add to this wealth of clinical data. Machine learning can encompass these parameters and thus enhance clinic...
Autores principales: | Giraud, Paul, Giraud, Philippe, Gasnier, Anne, El Ayachy, Radouane, Kreps, Sarah, Foy, Jean-Philippe, Durdux, Catherine, Huguet, Florence, Burgun, Anita, Bibault, Jean-Emmanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445892/ https://www.ncbi.nlm.nih.gov/pubmed/30972291 http://dx.doi.org/10.3389/fonc.2019.00174 |
Ejemplares similares
-
The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up
por: El Ayachy, Radouane, et al.
Publicado: (2021) -
A Radiomics Approach to Identify Immunologically Active Tumor in Patients with Head and Neck Squamous Cell Carcinomas
por: Nguyen, Tan Mai, et al.
Publicado: (2023) -
Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer
por: Bibault, Jean-Emmanuel, et al.
Publicado: (2018) -
Author Correction: Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer
por: Bibault, Jean-Emmanuel, et al.
Publicado: (2018) -
Integrating Multimodal Radiation Therapy Data into i2b2
por: Zapletal, Eric, et al.
Publicado: (2018)