Cargando…
A Machine Learning Approach for Identifying Gene Biomarkers Guiding the Treatment of Breast Cancer
Genomic profiles among different breast cancer survivors who received similar treatment may provide clues about the key biological processes involved in the cells and finding the right treatment. More specifically, such profiling may help personalize the treatment based on the patients’ gene express...
Autores principales: | Tabl, Ashraf Abou, Alkhateeb, Abedalrhman, ElMaraghy, Waguih, Rueda, Luis, Ngom, Alioune |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446069/ https://www.ncbi.nlm.nih.gov/pubmed/30972106 http://dx.doi.org/10.3389/fgene.2019.00256 |
Ejemplares similares
-
A Novel Approach for Identifying Relevant Genes for Breast Cancer
Survivability on Specific Therapies
por: Tabl, Ashraf Abou, et al.
Publicado: (2018) -
A Fecal-Microbial-Extracellular-Vesicles-Based Metabolomics Machine Learning Framework and Biomarker Discovery for Predicting Colorectal Cancer Patients
por: Yagin, Fatma Hilal, et al.
Publicado: (2023) -
Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data
por: Hamzeh, Osama, et al.
Publicado: (2020) -
A Hierarchical Machine Learning Model to Discover Gleason Grade-Specific Biomarkers in Prostate Cancer
por: Hamzeh, Osama, et al.
Publicado: (2019) -
Zseq: An Approach for Preprocessing Next-Generation Sequencing Data
por: Alkhateeb, Abedalrhman, et al.
Publicado: (2017)