Cargando…
Methodology of aiQSAR: a group-specific approach to QSAR modelling
BACKGROUND: Several QSAR methodology developments have shown promise in recent years. These include the consensus approach to generate the final prediction of a model, utilizing new, advanced machine learning algorithms and streamlining, standardization and automation of various QSAR steps. One appr...
Autores principales: | Vukovic, Kristijan, Gadaleta, Domenico, Benfenati, Emilio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446381/ https://www.ncbi.nlm.nih.gov/pubmed/30945010 http://dx.doi.org/10.1186/s13321-019-0350-y |
Ejemplares similares
-
SAR and QSAR modeling of a large collection of LD(50) rat acute oral toxicity data
por: Gadaleta, Domenico, et al.
Publicado: (2019) -
QSAR DataBank - an approach for the digital organization and archiving of QSAR model information
por: Ruusmann, Villu, et al.
Publicado: (2014) -
QSAR Development for Plasma Protein Binding: Influence of the Ionization State
por: Toma, Cosimo, et al.
Publicado: (2018) -
QSAR Models for Human Carcinogenicity: An Assessment Based on Oral and Inhalation Slope Factors
por: Toma, Cosimo, et al.
Publicado: (2020) -
New public QSAR model for carcinogenicity
por: Fjodorova, Natalja, et al.
Publicado: (2010)