Cargando…
Dynamic interaction network inference from longitudinal microbiome data
BACKGROUND: Several studies have focused on the microbiota living in environmental niches including human body sites. In many of these studies, researchers collect longitudinal data with the goal of understanding not only just the composition of the microbiome but also the interactions between the d...
Autores principales: | Lugo-Martinez, Jose, Ruiz-Perez, Daniel, Narasimhan, Giri, Bar-Joseph, Ziv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446388/ https://www.ncbi.nlm.nih.gov/pubmed/30940197 http://dx.doi.org/10.1186/s40168-019-0660-3 |
Ejemplares similares
-
Dynamic Bayesian Networks for Integrating Multi-omics Time Series Microbiome Data
por: Ruiz-Perez, Daniel, et al.
Publicado: (2021) -
Inferring microbial interaction network from microbiome data using RMN algorithm
por: Tsai, Kun-Nan, et al.
Publicado: (2015) -
GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data
por: Yuan, Ye, et al.
Publicado: (2020) -
ATria: a novel centrality algorithm applied to biological networks
por: Cickovski, Trevor, et al.
Publicado: (2017) -
Inference of Network Dynamics and Metabolic Interactions in the Gut Microbiome
por: Steinway, Steven N., et al.
Publicado: (2015)