Cargando…
Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors
Energy autonomy is critical for wearable and portable systems and to this end storage devices with high‐energy density are needed. This work presents high‐energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The gr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446598/ https://www.ncbi.nlm.nih.gov/pubmed/30989034 http://dx.doi.org/10.1002/advs.201802251 |
_version_ | 1783408388830396416 |
---|---|
author | Manjakkal, Libu Navaraj, William Taube Núñez, Carlos García Dahiya, Ravinder |
author_facet | Manjakkal, Libu Navaraj, William Taube Núñez, Carlos García Dahiya, Ravinder |
author_sort | Manjakkal, Libu |
collection | PubMed |
description | Energy autonomy is critical for wearable and portable systems and to this end storage devices with high‐energy density are needed. This work presents high‐energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The graphene–graphite polyurethane (GPU) composite based SCs have maximum energy and power densities of 10.22 µWh cm(−2) and 11.15 mW cm(−2), respectively, at a current density of 10 mA cm(−2) and operating voltage of 2.25 V (considering the IR drop). The significant gain in the performance of SCs is due to excellent electroactive surface per unit area (surface roughness 97.6 nm) of GPU composite and high electrical conductivity (0.318 S cm(−1)). The fabricated SCs show stable response for more than 15 000 charging/discharging cycles at current densities of 10 mA cm(−2) and operating voltage of 2.5 V (without considering the IR drop). The developed SCs are tested as energy storage devices for wide applications, namely: a) solar‐powered energy‐packs to operate 84 light‐emitting diodes (LEDs) for more than a minute and to drive the actuators of a prosthetic limb; b) powering high‐torque motors; and c) wristband for wearable sensors. |
format | Online Article Text |
id | pubmed-6446598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64465982019-04-15 Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors Manjakkal, Libu Navaraj, William Taube Núñez, Carlos García Dahiya, Ravinder Adv Sci (Weinh) Full Papers Energy autonomy is critical for wearable and portable systems and to this end storage devices with high‐energy density are needed. This work presents high‐energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The graphene–graphite polyurethane (GPU) composite based SCs have maximum energy and power densities of 10.22 µWh cm(−2) and 11.15 mW cm(−2), respectively, at a current density of 10 mA cm(−2) and operating voltage of 2.25 V (considering the IR drop). The significant gain in the performance of SCs is due to excellent electroactive surface per unit area (surface roughness 97.6 nm) of GPU composite and high electrical conductivity (0.318 S cm(−1)). The fabricated SCs show stable response for more than 15 000 charging/discharging cycles at current densities of 10 mA cm(−2) and operating voltage of 2.5 V (without considering the IR drop). The developed SCs are tested as energy storage devices for wide applications, namely: a) solar‐powered energy‐packs to operate 84 light‐emitting diodes (LEDs) for more than a minute and to drive the actuators of a prosthetic limb; b) powering high‐torque motors; and c) wristband for wearable sensors. John Wiley and Sons Inc. 2019-02-13 /pmc/articles/PMC6446598/ /pubmed/30989034 http://dx.doi.org/10.1002/advs.201802251 Text en © 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Manjakkal, Libu Navaraj, William Taube Núñez, Carlos García Dahiya, Ravinder Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors |
title | Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors |
title_full | Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors |
title_fullStr | Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors |
title_full_unstemmed | Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors |
title_short | Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors |
title_sort | graphene–graphite polyurethane composite based high‐energy density flexible supercapacitors |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446598/ https://www.ncbi.nlm.nih.gov/pubmed/30989034 http://dx.doi.org/10.1002/advs.201802251 |
work_keys_str_mv | AT manjakkallibu graphenegraphitepolyurethanecompositebasedhighenergydensityflexiblesupercapacitors AT navarajwilliamtaube graphenegraphitepolyurethanecompositebasedhighenergydensityflexiblesupercapacitors AT nunezcarlosgarcia graphenegraphitepolyurethanecompositebasedhighenergydensityflexiblesupercapacitors AT dahiyaravinder graphenegraphitepolyurethanecompositebasedhighenergydensityflexiblesupercapacitors |