Cargando…
Toward Functional Synthetic Cells: In‐Depth Study of Nanoparticle and Enzyme Diffusion through a Cross‐Linked Polymersome Membrane
Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swol...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446602/ https://www.ncbi.nlm.nih.gov/pubmed/30989019 http://dx.doi.org/10.1002/advs.201801299 |
_version_ | 1783408389787746304 |
---|---|
author | Gumz, Hannes Boye, Susanne Iyisan, Banu Krönert, Vera Formanek, Petr Voit, Brigitte Lederer, Albena Appelhans, Dietmar |
author_facet | Gumz, Hannes Boye, Susanne Iyisan, Banu Krönert, Vera Formanek, Petr Voit, Brigitte Lederer, Albena Appelhans, Dietmar |
author_sort | Gumz, Hannes |
collection | PubMed |
description | Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin—gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase—with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple‐detector asymmetrical flow field‐flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme‐containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell‐like functions in polymersomes. |
format | Online Article Text |
id | pubmed-6446602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64466022019-04-15 Toward Functional Synthetic Cells: In‐Depth Study of Nanoparticle and Enzyme Diffusion through a Cross‐Linked Polymersome Membrane Gumz, Hannes Boye, Susanne Iyisan, Banu Krönert, Vera Formanek, Petr Voit, Brigitte Lederer, Albena Appelhans, Dietmar Adv Sci (Weinh) Full Papers Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin—gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase—with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple‐detector asymmetrical flow field‐flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme‐containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell‐like functions in polymersomes. John Wiley and Sons Inc. 2019-01-11 /pmc/articles/PMC6446602/ /pubmed/30989019 http://dx.doi.org/10.1002/advs.201801299 Text en © 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Gumz, Hannes Boye, Susanne Iyisan, Banu Krönert, Vera Formanek, Petr Voit, Brigitte Lederer, Albena Appelhans, Dietmar Toward Functional Synthetic Cells: In‐Depth Study of Nanoparticle and Enzyme Diffusion through a Cross‐Linked Polymersome Membrane |
title | Toward Functional Synthetic Cells: In‐Depth Study of Nanoparticle and Enzyme Diffusion through a Cross‐Linked Polymersome Membrane |
title_full | Toward Functional Synthetic Cells: In‐Depth Study of Nanoparticle and Enzyme Diffusion through a Cross‐Linked Polymersome Membrane |
title_fullStr | Toward Functional Synthetic Cells: In‐Depth Study of Nanoparticle and Enzyme Diffusion through a Cross‐Linked Polymersome Membrane |
title_full_unstemmed | Toward Functional Synthetic Cells: In‐Depth Study of Nanoparticle and Enzyme Diffusion through a Cross‐Linked Polymersome Membrane |
title_short | Toward Functional Synthetic Cells: In‐Depth Study of Nanoparticle and Enzyme Diffusion through a Cross‐Linked Polymersome Membrane |
title_sort | toward functional synthetic cells: in‐depth study of nanoparticle and enzyme diffusion through a cross‐linked polymersome membrane |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446602/ https://www.ncbi.nlm.nih.gov/pubmed/30989019 http://dx.doi.org/10.1002/advs.201801299 |
work_keys_str_mv | AT gumzhannes towardfunctionalsyntheticcellsindepthstudyofnanoparticleandenzymediffusionthroughacrosslinkedpolymersomemembrane AT boyesusanne towardfunctionalsyntheticcellsindepthstudyofnanoparticleandenzymediffusionthroughacrosslinkedpolymersomemembrane AT iyisanbanu towardfunctionalsyntheticcellsindepthstudyofnanoparticleandenzymediffusionthroughacrosslinkedpolymersomemembrane AT kronertvera towardfunctionalsyntheticcellsindepthstudyofnanoparticleandenzymediffusionthroughacrosslinkedpolymersomemembrane AT formanekpetr towardfunctionalsyntheticcellsindepthstudyofnanoparticleandenzymediffusionthroughacrosslinkedpolymersomemembrane AT voitbrigitte towardfunctionalsyntheticcellsindepthstudyofnanoparticleandenzymediffusionthroughacrosslinkedpolymersomemembrane AT ledereralbena towardfunctionalsyntheticcellsindepthstudyofnanoparticleandenzymediffusionthroughacrosslinkedpolymersomemembrane AT appelhansdietmar towardfunctionalsyntheticcellsindepthstudyofnanoparticleandenzymediffusionthroughacrosslinkedpolymersomemembrane |