Cargando…

Structure, function, and regulation of mitofusin‐2 in health and disease

Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin‐related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations...

Descripción completa

Detalles Bibliográficos
Autores principales: Chandhok, Gursimran, Lazarou, Michael, Neumann, Brent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446723/
https://www.ncbi.nlm.nih.gov/pubmed/29068134
http://dx.doi.org/10.1111/brv.12378
Descripción
Sumario:Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin‐related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations in these molecules are associated with severe neurodegenerative and non‐neurological diseases pointing to the importance of functional mitochondrial dynamics in normal cell physiology. In recent years, significant progress has been made in our understanding of mitochondrial dynamics, which has raised interest in defining the physiological roles of key regulators of fusion and fission and led to the identification of additional functions of Mfn2 in mitochondrial metabolism, cell signalling, and apoptosis. In this review, we summarize the current knowledge of the structural and functional properties of Mfn2 as well as its regulation in different tissues, and also discuss the consequences of aberrant Mfn2 expression.