Cargando…
Influence of Cell Configuration and Long-Term Operation on Electrochemical Phosphorus Recovery from Domestic Wastewater
[Image: see text] Phosphorus (P) is an important, scarce, and irreplaceable element, and therefore its recovery and recycling are essential for the sustainability of the modern world. We previously demonstrated the possibility of P recovery by electrochemically induced calcium phosphate precipitatio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446861/ https://www.ncbi.nlm.nih.gov/pubmed/30972262 http://dx.doi.org/10.1021/acssuschemeng.9b00563 |
_version_ | 1783408430658093056 |
---|---|
author | Lei, Yang Remmers, Jorrit Christiaan Saakes, Michel van der Weijden, Renata D. Buisman, Cees J. N. |
author_facet | Lei, Yang Remmers, Jorrit Christiaan Saakes, Michel van der Weijden, Renata D. Buisman, Cees J. N. |
author_sort | Lei, Yang |
collection | PubMed |
description | [Image: see text] Phosphorus (P) is an important, scarce, and irreplaceable element, and therefore its recovery and recycling are essential for the sustainability of the modern world. We previously demonstrated the possibility of P recovery by electrochemically induced calcium phosphate precipitation. In this Article, we further investigated the influence of cell configuration and long-term operation on the removal of P and coremoved calcium (Ca), magnesium (Mg), and inorganic carbon. The results indicated that the relative removal of P was faster than that of Ca, Mg, and inorganic carbon initially, but later, due to decreased P concentration, the removal of Ca and Mg became dominant. A maximum P removal in 4 days is 75% at 1.4 A m(–2), 85% at 8.3 A m(–2) and 92% at 27.8 A m(–2). While a higher current density improves the removal of all ions, the relative increased removal of Ca and Mg affects the product quality. While the variation of electrode distance and electrode material have no significant effects on P removal, it has implication for reducing the energy cost. A 16-day continuous-flow test proved calcium phosphate precipitation could continue for 6 days without losing efficiency even when the cathode was covered with precipitates. However, after 6 days, the precipitates need to be collected; otherwise, the removal efficiency dropped for P removal. Economic evaluation indicates that the recovery cost lies in the range of 2.3–201.4 euro/kg P, depending on P concentration in targeted wastewater and electrolysis current. We concluded that a better strategy for producing a product with high P content in an energy-efficient way is to construct the electrochemical cell with cheaper stainless steel cathode, with a shorter electrode distance, and that targets P-rich wastewater. |
format | Online Article Text |
id | pubmed-6446861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-64468612019-04-08 Influence of Cell Configuration and Long-Term Operation on Electrochemical Phosphorus Recovery from Domestic Wastewater Lei, Yang Remmers, Jorrit Christiaan Saakes, Michel van der Weijden, Renata D. Buisman, Cees J. N. ACS Sustain Chem Eng [Image: see text] Phosphorus (P) is an important, scarce, and irreplaceable element, and therefore its recovery and recycling are essential for the sustainability of the modern world. We previously demonstrated the possibility of P recovery by electrochemically induced calcium phosphate precipitation. In this Article, we further investigated the influence of cell configuration and long-term operation on the removal of P and coremoved calcium (Ca), magnesium (Mg), and inorganic carbon. The results indicated that the relative removal of P was faster than that of Ca, Mg, and inorganic carbon initially, but later, due to decreased P concentration, the removal of Ca and Mg became dominant. A maximum P removal in 4 days is 75% at 1.4 A m(–2), 85% at 8.3 A m(–2) and 92% at 27.8 A m(–2). While a higher current density improves the removal of all ions, the relative increased removal of Ca and Mg affects the product quality. While the variation of electrode distance and electrode material have no significant effects on P removal, it has implication for reducing the energy cost. A 16-day continuous-flow test proved calcium phosphate precipitation could continue for 6 days without losing efficiency even when the cathode was covered with precipitates. However, after 6 days, the precipitates need to be collected; otherwise, the removal efficiency dropped for P removal. Economic evaluation indicates that the recovery cost lies in the range of 2.3–201.4 euro/kg P, depending on P concentration in targeted wastewater and electrolysis current. We concluded that a better strategy for producing a product with high P content in an energy-efficient way is to construct the electrochemical cell with cheaper stainless steel cathode, with a shorter electrode distance, and that targets P-rich wastewater. American Chemical Society 2019-03-10 2019-04-01 /pmc/articles/PMC6446861/ /pubmed/30972262 http://dx.doi.org/10.1021/acssuschemeng.9b00563 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Lei, Yang Remmers, Jorrit Christiaan Saakes, Michel van der Weijden, Renata D. Buisman, Cees J. N. Influence of Cell Configuration and Long-Term Operation on Electrochemical Phosphorus Recovery from Domestic Wastewater |
title | Influence of Cell Configuration and Long-Term Operation
on Electrochemical Phosphorus Recovery from Domestic Wastewater |
title_full | Influence of Cell Configuration and Long-Term Operation
on Electrochemical Phosphorus Recovery from Domestic Wastewater |
title_fullStr | Influence of Cell Configuration and Long-Term Operation
on Electrochemical Phosphorus Recovery from Domestic Wastewater |
title_full_unstemmed | Influence of Cell Configuration and Long-Term Operation
on Electrochemical Phosphorus Recovery from Domestic Wastewater |
title_short | Influence of Cell Configuration and Long-Term Operation
on Electrochemical Phosphorus Recovery from Domestic Wastewater |
title_sort | influence of cell configuration and long-term operation
on electrochemical phosphorus recovery from domestic wastewater |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446861/ https://www.ncbi.nlm.nih.gov/pubmed/30972262 http://dx.doi.org/10.1021/acssuschemeng.9b00563 |
work_keys_str_mv | AT leiyang influenceofcellconfigurationandlongtermoperationonelectrochemicalphosphorusrecoveryfromdomesticwastewater AT remmersjorritchristiaan influenceofcellconfigurationandlongtermoperationonelectrochemicalphosphorusrecoveryfromdomesticwastewater AT saakesmichel influenceofcellconfigurationandlongtermoperationonelectrochemicalphosphorusrecoveryfromdomesticwastewater AT vanderweijdenrenatad influenceofcellconfigurationandlongtermoperationonelectrochemicalphosphorusrecoveryfromdomesticwastewater AT buismanceesjn influenceofcellconfigurationandlongtermoperationonelectrochemicalphosphorusrecoveryfromdomesticwastewater |