Cargando…
Machine‐learning‐derived sleep–wake staging from around‐the‐ear electroencephalogram outperforms manual scoring and actigraphy
Quantification of sleep is important for the diagnosis of sleep disorders and sleep research. However, the only widely accepted method to obtain sleep staging is by visual analysis of polysomnography (PSG), which is expensive and time consuming. Here, we investigate automated sleep scoring based on...
Autores principales: | Mikkelsen, Kaare B., Ebajemito, James K., Bonmati‐Carrion, Maria A., Santhi, Nayantara, Revell, Victoria L., Atzori, Giuseppe, della Monica, Ciro, Debener, Stefan, Dijk, Derk‐Jan, Sterr, Annette, de Vos, Maarten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446944/ https://www.ncbi.nlm.nih.gov/pubmed/30421469 http://dx.doi.org/10.1111/jsr.12786 |
Ejemplares similares
-
Sleep EEG Derived From Behind-the-Ear Electrodes (cEEGrid) Compared to Standard Polysomnography: A Proof of Concept Study
por: Sterr, Annette, et al.
Publicado: (2018) -
Contactless and longitudinal monitoring of nocturnal sleep and daytime naps in older men and women: a digital health technology evaluation study
por: Ravindran, Kiran K G, et al.
Publicado: (2023) -
Actigraphy in studies on insomnia: Worth the effort?
por: Rösler, Lara, et al.
Publicado: (2022) -
The role of sleep and wakefulness in the recognition of emotional pictures
por: Carollo, Giacomo, et al.
Publicado: (2022) -
Sleepiness is a signal to go to bed: data and model simulations
por: Shochat, Tamar, et al.
Publicado: (2021)