Cargando…

Light triggers molecular shuttling in rotaxanes: control over proximity and charge recombination

We present the synthesis of novel rotaxanes based on mechanically interlocked porphyrins and fullerene and their advanced investigations by means of photophysical measurements. To this end, a fullerene-capped dumbbell-type axle containing a central triazole was threaded through strapped (metallo)por...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolf, Maximilian, Ogawa, Ayumu, Bechtold, Mareike, Vonesch, Maxime, Wytko, Jennifer A., Oohora, Koji, Campidelli, Stéphane, Hayashi, Takashi, Guldi, Dirk M., Weiss, Jean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446966/
https://www.ncbi.nlm.nih.gov/pubmed/30996970
http://dx.doi.org/10.1039/c8sc05328f
Descripción
Sumario:We present the synthesis of novel rotaxanes based on mechanically interlocked porphyrins and fullerene and their advanced investigations by means of photophysical measurements. To this end, a fullerene-capped dumbbell-type axle containing a central triazole was threaded through strapped (metallo)porphyrins—either a free-base or a zinc porphyrin. Femtosecond-resolved transient absorption measurements revealed charge-separation between the porphyrin and fullerene upon light excitation. Solvent polarity and solvent coordination effects induced molecular motion of the rotaxanes upon charge separation and enabled, for the first time, subtle control over the charge recombination by enabling and controlling the directionality of shuttling.