Cargando…

Reference genes for accurate evaluation of expression levels in Trichophyton interdigitale grown under different carbon sources, pH levels and phosphate levels

Tinea pedis is a type of dermatophytosis caused by anthropophilic keratinolytic fungi such as Trichophyton interdigitale. Quantitative reverse transcription PCR (RT-qPCR) is a reliable and reproducible technique for measuring changes in target gene expression across various biological conditions. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Ciesielska, Anita, Oleksak, Beata, Stączek, Paweł
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447595/
https://www.ncbi.nlm.nih.gov/pubmed/30944363
http://dx.doi.org/10.1038/s41598-019-42065-5
Descripción
Sumario:Tinea pedis is a type of dermatophytosis caused by anthropophilic keratinolytic fungi such as Trichophyton interdigitale. Quantitative reverse transcription PCR (RT-qPCR) is a reliable and reproducible technique for measuring changes in target gene expression across various biological conditions. A crucial aspect of accurate normalization is the choice of appropriate internal controls. To identify reference genes for accurate evaluation of expression levels in T. interdigitale, the transcription levels of eight candidate reference genes (adp-rf, β-act, ef1-α, gapdh, psm1, sdha, rpl2 and ubc) and one target gene (Tri m4) were analysed by RT-qPCR after growing the dermatophyte under different environmental conditions. The results obtained from expression stability evaluations with NormFinder, geNorm, BestKeeper, and RefFinder software demonstrated that adp-rf and psm1 were the most stable internal control genes across all experimental conditions. The present study constitutes the first report of the identification and validation of reference genes for RT-qPCR normalization for T. interdigitale grown under different environmental conditions resembling the conditions encountered by fungi during invasion of skin.