Cargando…

Empyema and pyogenic spondylitis caused by direct Streptococcus gordonii infection after a compression fracture: a case report

BACKGROUND: Empyema and pyogenic spondylitis are common diseases that are often caused by oral pathogens in direct or hematogenous infection. However, there exists no report describing empyema and pyogenic spondylitis caused by oral pathogens after a compression fracture of the vertebral body. Herei...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakamura, Daisuke, Kondo, Ryoichi, Makiuchi, Akiko, Isobe, Kenichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447627/
https://www.ncbi.nlm.nih.gov/pubmed/30945040
http://dx.doi.org/10.1186/s40792-019-0613-x
Descripción
Sumario:BACKGROUND: Empyema and pyogenic spondylitis are common diseases that are often caused by oral pathogens in direct or hematogenous infection. However, there exists no report describing empyema and pyogenic spondylitis caused by oral pathogens after a compression fracture of the vertebral body. Herein, we report a case of empyema and pyogenic spondylitis caused by direct Streptococcus gordonii infection after a compression fracture of the vertebral body. CASE PRESENTATION: A 74-year-old man had back pain while working. At 1 week after experiencing back pain, he underwent periodontal debridement. At 3 weeks after periodontal debridement, he visited our hospital owing to the absence of improvement in back pain. He was admitted on the same day with a diagnosis of compression fracture of the 12th thoracic vertebral body. Magnetic resonance imaging (MRI) revealed a compression fracture of the 12th thoracic vertebral body and a hematoma anterior to the vertebral body. Computed tomography (CT) showed no findings suggestive of infection. After admission, antibiotic therapy was initiated, as the patient developed fever and his blood cultures grew S. gordonii. CT performed after antibiotic therapy revealed a right-sided pleural effusion, and drainage was performed. As the inflammation did not improve after thoracic drainage for empyema, surgical debridement through video-assisted thoracic surgery was performed. Intraoperative pleural effusion cultures also grew S. gordonii. Postoperative MRI showed low T1-weighted signals and high T2-weighted signals in the 12th thoracic vertebral body, and the signals spread to the upper and lower intervertebral disk space; hence, a diagnosis of empyema and pyogenic spondylitis due to direct infection spread was established. Intravenous antibiotic therapy was continued for 6 weeks and then was switched to oral antibiotic treatment. His C-reactive protein level and erythrocyte sedimentation rate gradually decreased and remained within normal limits. Neither empyema nor pyogenic spondylitis had recurred at 12 months after surgery. CONCLUSIONS: Compression fracture with dental procedures possibly results in the thoracic cavity and spinal infection caused by oral pathogens. We emphasize the importance of early imaging examinations, diagnosis, and appropriate treatment for patients with compression fractures who develop a fever.