Cargando…
Epigenetic modification of ESP, encoding a putative long noncoding RNA, affects panicle architecture in rice
Epigenetic variants broaden phenotypic diversity in eukaryotes. Epialleles may also provide a new genetic source for crop breeding, but very few epialleles related to agricultural traits have been identified in rice. Here, we identified Epi-sp, a gain-of-function epiallele of the rice ESP (Epigeneti...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447638/ https://www.ncbi.nlm.nih.gov/pubmed/30945026 http://dx.doi.org/10.1186/s12284-019-0282-1 |
Sumario: | Epigenetic variants broaden phenotypic diversity in eukaryotes. Epialleles may also provide a new genetic source for crop breeding, but very few epialleles related to agricultural traits have been identified in rice. Here, we identified Epi-sp, a gain-of-function epiallele of the rice ESP (Epigenetic Short Panicle, Os01g0356951), which encodes a putative long noncoding RNA. The Epi-sp plants show a dense and short panicle phenotype, an agronomically important phenotypes that is inherited in a semidominant manner. We did not find any nucleotide sequence variation in ESP. Instead, we found hypomethylation in the transcriptional termination region (TTR) of ESP gene, which caused ectopic expression of ESP in Epi-sp plants. Bisulfite analysis revealed that the methylation status of 26 CGs and 13 CHGs within a continuous 313-bp region is essential for the regulation of ESP expression. Thus, our work identified a unique rice epiallele and demonstrated that epigenetic modification of ESP is associated with the regulation of panicle architecture in rice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12284-019-0282-1) contains supplementary material, which is available to authorized users. |
---|