Cargando…
Comparative study on typhoon’s wind speed prediction by a neural networks model and a hydrodynamical model
There are many models to predict natural phenomena around the world, but it is still difficult to accurately forecast the events. Many scientists, modeling professions, students, and researchers working on the tropical cyclones prediction, but they are encountered to many errors during compiling and...
Autor principal: | Haghroosta, Tahereh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447746/ https://www.ncbi.nlm.nih.gov/pubmed/30989055 http://dx.doi.org/10.1016/j.mex.2019.03.002 |
Ejemplares similares
-
Set-up and input dataset files of the Delft3d model for hydrodynamic modelling considering wind, waves, tides and currents through multidomain grids
por: Rueda-Bayona, Juan Gabriel, et al.
Publicado: (2019) -
Relative sea-level data from the SEAMIS database compared to ICE-5G model predictions of glacial isostatic adjustment
por: Mann, Thomas, et al.
Publicado: (2019) -
Dataset of trend-preserving bias-corrected daily temperature, precipitation and wind from NEX-GDDP and CMIP5 over the Qinghai-Tibet Plateau
por: Chen, Shuo, et al.
Publicado: (2020) -
SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks
por: Dorafshan, Sattar, et al.
Publicado: (2018) -
A statistical and numerical modeling approach for spatiotemporal reconstruction of glaciations in the Central Asian mountains
por: Saha, Sourav, et al.
Publicado: (2020)