Cargando…

Optimized Transferosomal Bovine Lactoferrin (BLF) as a Promising Novel Non-Invasive Topical Treatment for Genital Warts Caused by Human Papiluma Virus (HPV)

Human papillomavirus (HPV) cause common warts, laryngeal papilloma, and genital condylomata and might lead to development of cervical cancer. Lactoferrin (LF) is a member of the transferrin family, which has antiviral activity against HPV-16.  LF is an important player in the defense against pathoge...

Descripción completa

Detalles Bibliográficos
Autores principales: Hadidi, Naghmeh, Saffari, Mostafa, Faizi, Mehrdad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447872/
https://www.ncbi.nlm.nih.gov/pubmed/31011338
_version_ 1783408587833344000
author Hadidi, Naghmeh
Saffari, Mostafa
Faizi, Mehrdad
author_facet Hadidi, Naghmeh
Saffari, Mostafa
Faizi, Mehrdad
author_sort Hadidi, Naghmeh
collection PubMed
description Human papillomavirus (HPV) cause common warts, laryngeal papilloma, and genital condylomata and might lead to development of cervical cancer. Lactoferrin (LF) is a member of the transferrin family, which has antiviral activity against HPV-16.  LF is an important player in the defense against pathogenic microorganisms and has also been shown to have activity against several viruses including herpesvirus, adenovirus, rotavirus, and poliovirus. Bovine LF (BLF) has been reported to be a more potent inhibitor of HPV entry in comparison to human LF. The goal of the present study is to formulate, evaluate and optimize transfersomal vesicles as a non-invasive transdermal delivery system which assumed to be a suitable for treatment of genital warts. Transfersomes have been prepared by two methods including reverse phase evaporation and thin film hydration with different ratios of cholesterol: lecithin: DOTAP in the presence of SDS or Tween 80. The transferosomes were then evaluated regarding size, polydispersity, and LF loading. In-vitro release studies in pH 5.3 and 7.4, stability evaluation in 4 °C and 25 °C, and TEM imaging hve been performed on optimized transferosomal lactoferrin. The optimized transferosomes were found to have 100 nm sizes with good polydispersity index and encapsulation efficiency of 91% for lactoferrin as well as sustained release of lactoferrin during 24 h. Transferosomal lactoferrin efficacy was evaluated by MTT assay. It was seen that the viral inhibitory concentration (IC50) of transfersomal lactoferrin has been significantly improved to nearly one tenth in comparison to free lactoferrin.
format Online
Article
Text
id pubmed-6447872
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Shaheed Beheshti University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-64478722019-04-22 Optimized Transferosomal Bovine Lactoferrin (BLF) as a Promising Novel Non-Invasive Topical Treatment for Genital Warts Caused by Human Papiluma Virus (HPV) Hadidi, Naghmeh Saffari, Mostafa Faizi, Mehrdad Iran J Pharm Res Original Article Human papillomavirus (HPV) cause common warts, laryngeal papilloma, and genital condylomata and might lead to development of cervical cancer. Lactoferrin (LF) is a member of the transferrin family, which has antiviral activity against HPV-16.  LF is an important player in the defense against pathogenic microorganisms and has also been shown to have activity against several viruses including herpesvirus, adenovirus, rotavirus, and poliovirus. Bovine LF (BLF) has been reported to be a more potent inhibitor of HPV entry in comparison to human LF. The goal of the present study is to formulate, evaluate and optimize transfersomal vesicles as a non-invasive transdermal delivery system which assumed to be a suitable for treatment of genital warts. Transfersomes have been prepared by two methods including reverse phase evaporation and thin film hydration with different ratios of cholesterol: lecithin: DOTAP in the presence of SDS or Tween 80. The transferosomes were then evaluated regarding size, polydispersity, and LF loading. In-vitro release studies in pH 5.3 and 7.4, stability evaluation in 4 °C and 25 °C, and TEM imaging hve been performed on optimized transferosomal lactoferrin. The optimized transferosomes were found to have 100 nm sizes with good polydispersity index and encapsulation efficiency of 91% for lactoferrin as well as sustained release of lactoferrin during 24 h. Transferosomal lactoferrin efficacy was evaluated by MTT assay. It was seen that the viral inhibitory concentration (IC50) of transfersomal lactoferrin has been significantly improved to nearly one tenth in comparison to free lactoferrin. Shaheed Beheshti University of Medical Sciences 2018 /pmc/articles/PMC6447872/ /pubmed/31011338 Text en This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Hadidi, Naghmeh
Saffari, Mostafa
Faizi, Mehrdad
Optimized Transferosomal Bovine Lactoferrin (BLF) as a Promising Novel Non-Invasive Topical Treatment for Genital Warts Caused by Human Papiluma Virus (HPV)
title Optimized Transferosomal Bovine Lactoferrin (BLF) as a Promising Novel Non-Invasive Topical Treatment for Genital Warts Caused by Human Papiluma Virus (HPV)
title_full Optimized Transferosomal Bovine Lactoferrin (BLF) as a Promising Novel Non-Invasive Topical Treatment for Genital Warts Caused by Human Papiluma Virus (HPV)
title_fullStr Optimized Transferosomal Bovine Lactoferrin (BLF) as a Promising Novel Non-Invasive Topical Treatment for Genital Warts Caused by Human Papiluma Virus (HPV)
title_full_unstemmed Optimized Transferosomal Bovine Lactoferrin (BLF) as a Promising Novel Non-Invasive Topical Treatment for Genital Warts Caused by Human Papiluma Virus (HPV)
title_short Optimized Transferosomal Bovine Lactoferrin (BLF) as a Promising Novel Non-Invasive Topical Treatment for Genital Warts Caused by Human Papiluma Virus (HPV)
title_sort optimized transferosomal bovine lactoferrin (blf) as a promising novel non-invasive topical treatment for genital warts caused by human papiluma virus (hpv)
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447872/
https://www.ncbi.nlm.nih.gov/pubmed/31011338
work_keys_str_mv AT hadidinaghmeh optimizedtransferosomalbovinelactoferrinblfasapromisingnovelnoninvasivetopicaltreatmentforgenitalwartscausedbyhumanpapilumavirushpv
AT saffarimostafa optimizedtransferosomalbovinelactoferrinblfasapromisingnovelnoninvasivetopicaltreatmentforgenitalwartscausedbyhumanpapilumavirushpv
AT faizimehrdad optimizedtransferosomalbovinelactoferrinblfasapromisingnovelnoninvasivetopicaltreatmentforgenitalwartscausedbyhumanpapilumavirushpv