Cargando…

Investigation of optimal pathways for preeclampsia using network-based guilt by association algorithm

This study investigated optimal pathways for preeclampsia (PE) utilizing the network-based guilt by association (GBA) algorithm. The inference method consisted of four steps: preparing differentially expressed genes (DEGs) between PE patients and normal controls from gene expression data; constructi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruan, Yan, Li, Yuan, Liu, Yingping, Zhou, Jianxin, Wang, Xin, Zhang, Weiyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447911/
https://www.ncbi.nlm.nih.gov/pubmed/30988790
http://dx.doi.org/10.3892/etm.2019.7410
Descripción
Sumario:This study investigated optimal pathways for preeclampsia (PE) utilizing the network-based guilt by association (GBA) algorithm. The inference method consisted of four steps: preparing differentially expressed genes (DEGs) between PE patients and normal controls from gene expression data; constructing co-expression network (CEN) for DEGs utilizing Spearman's correlation coefficient (SCC) method; and predicting optimal pathways by network-based GBA algorithm of which the area under the receiver operating characteristics curve (AUROC) was gained for each pathway. There were 351 DEGs and 61,425 edges in the CEN for PE. Subsequently, 53 pathways were obtained with a good classification performance (AUROC >0.5). AUROC for 9 was >0.9 and defined as optimal pathways, especially microRNAs in cancer (AUROC=0.9966), gap junction (AUROC=0.9922), and pathogenic Escherichia coli infection (AUROC=0.9888). Nine optimal pathways were identified through comprehensive analysis of data from PE patients, which might shed new light on uncovering molecular and pathological mechanism of PE.