Cargando…
MicroRNA-216a suppresses the proliferation and migration of human breast cancer cells via the Wnt/β-catenin signaling pathway
The aim of the present study was to investigate the potential anticancer effects of microRNA-216a on the growth of human breast cancer and the possible underlying mechanisms. The results demonstrated that serum microRNA-216a was significantly decreased in patients with breast cancer compared with he...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448085/ https://www.ncbi.nlm.nih.gov/pubmed/30864744 http://dx.doi.org/10.3892/or.2019.7050 |
Sumario: | The aim of the present study was to investigate the potential anticancer effects of microRNA-216a on the growth of human breast cancer and the possible underlying mechanisms. The results demonstrated that serum microRNA-216a was significantly decreased in patients with breast cancer compared with healthy controls. MicroRNA-216a overexpression led to a decrease in cell proliferation and migration, as well as increases in apoptosis, caspase-3/8 activities, Bax expression and p53 protein expression in MCF-7 cells. It was also revealed that microRNA-216a suppressed Wnt and β-catenin expression in MCF-7 cells. The anticancer effects of microRNA-216a were reversed by anti-microRNA-216a by promoting the Wnt/β-catenin signaling pathway. Inactivation of the Wnt pathway increased the anticancer effects of microRNA-216a in MCF-7 cells. Collectively, the results of the present study indicated that microRNA-216a suppressed the growth of human breast cancer cells by targeting the Wnt/β-catenin signaling pathway. |
---|