Cargando…

Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1

Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analys...

Descripción completa

Detalles Bibliográficos
Autores principales: Szatkowska, Roza, Garcia-Albornoz, Manuel, Roszkowska, Katarzyna, Holman, Stephen W., Furmanek, Emil, Hubbard, Simon J., Beynon, Robert J., Adamczyk, Malgorzata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448137/
https://www.ncbi.nlm.nih.gov/pubmed/30885983
http://dx.doi.org/10.1042/BCJ20180701
_version_ 1783408640589299712
author Szatkowska, Roza
Garcia-Albornoz, Manuel
Roszkowska, Katarzyna
Holman, Stephen W.
Furmanek, Emil
Hubbard, Simon J.
Beynon, Robert J.
Adamczyk, Malgorzata
author_facet Szatkowska, Roza
Garcia-Albornoz, Manuel
Roszkowska, Katarzyna
Holman, Stephen W.
Furmanek, Emil
Hubbard, Simon J.
Beynon, Robert J.
Adamczyk, Malgorzata
author_sort Szatkowska, Roza
collection PubMed
description Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae. In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.
format Online
Article
Text
id pubmed-6448137
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Portland Press Ltd.
record_format MEDLINE/PubMed
spelling pubmed-64481372019-04-16 Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1 Szatkowska, Roza Garcia-Albornoz, Manuel Roszkowska, Katarzyna Holman, Stephen W. Furmanek, Emil Hubbard, Simon J. Beynon, Robert J. Adamczyk, Malgorzata Biochem J Research Articles Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae. In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux. Portland Press Ltd. 2019-04-15 2019-04-04 /pmc/articles/PMC6448137/ /pubmed/30885983 http://dx.doi.org/10.1042/BCJ20180701 Text en © 2019 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Research Articles
Szatkowska, Roza
Garcia-Albornoz, Manuel
Roszkowska, Katarzyna
Holman, Stephen W.
Furmanek, Emil
Hubbard, Simon J.
Beynon, Robert J.
Adamczyk, Malgorzata
Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1
title Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1
title_full Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1
title_fullStr Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1
title_full_unstemmed Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1
title_short Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1
title_sort glycolytic flux in saccharomyces cerevisiae is dependent on rna polymerase iii and its negative regulator maf1
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448137/
https://www.ncbi.nlm.nih.gov/pubmed/30885983
http://dx.doi.org/10.1042/BCJ20180701
work_keys_str_mv AT szatkowskaroza glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1
AT garciaalbornozmanuel glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1
AT roszkowskakatarzyna glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1
AT holmanstephenw glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1
AT furmanekemil glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1
AT hubbardsimonj glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1
AT beynonrobertj glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1
AT adamczykmalgorzata glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1