Cargando…
Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1
Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analys...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448137/ https://www.ncbi.nlm.nih.gov/pubmed/30885983 http://dx.doi.org/10.1042/BCJ20180701 |
_version_ | 1783408640589299712 |
---|---|
author | Szatkowska, Roza Garcia-Albornoz, Manuel Roszkowska, Katarzyna Holman, Stephen W. Furmanek, Emil Hubbard, Simon J. Beynon, Robert J. Adamczyk, Malgorzata |
author_facet | Szatkowska, Roza Garcia-Albornoz, Manuel Roszkowska, Katarzyna Holman, Stephen W. Furmanek, Emil Hubbard, Simon J. Beynon, Robert J. Adamczyk, Malgorzata |
author_sort | Szatkowska, Roza |
collection | PubMed |
description | Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae. In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux. |
format | Online Article Text |
id | pubmed-6448137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64481372019-04-16 Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1 Szatkowska, Roza Garcia-Albornoz, Manuel Roszkowska, Katarzyna Holman, Stephen W. Furmanek, Emil Hubbard, Simon J. Beynon, Robert J. Adamczyk, Malgorzata Biochem J Research Articles Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae. In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux. Portland Press Ltd. 2019-04-15 2019-04-04 /pmc/articles/PMC6448137/ /pubmed/30885983 http://dx.doi.org/10.1042/BCJ20180701 Text en © 2019 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Research Articles Szatkowska, Roza Garcia-Albornoz, Manuel Roszkowska, Katarzyna Holman, Stephen W. Furmanek, Emil Hubbard, Simon J. Beynon, Robert J. Adamczyk, Malgorzata Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1 |
title | Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1 |
title_full | Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1 |
title_fullStr | Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1 |
title_full_unstemmed | Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1 |
title_short | Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1 |
title_sort | glycolytic flux in saccharomyces cerevisiae is dependent on rna polymerase iii and its negative regulator maf1 |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448137/ https://www.ncbi.nlm.nih.gov/pubmed/30885983 http://dx.doi.org/10.1042/BCJ20180701 |
work_keys_str_mv | AT szatkowskaroza glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1 AT garciaalbornozmanuel glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1 AT roszkowskakatarzyna glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1 AT holmanstephenw glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1 AT furmanekemil glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1 AT hubbardsimonj glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1 AT beynonrobertj glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1 AT adamczykmalgorzata glycolyticfluxinsaccharomycescerevisiaeisdependentonrnapolymeraseiiianditsnegativeregulatormaf1 |