Cargando…

A multiparametric method to assess the MIM deformable image registration algorithm

A quantitative evaluation of the performances of the deformable image registration (DIR) algorithm implemented in MIM‐Maestro was performed using multiple similarity indices. Two phantoms, capable of mimicking different anatomical bending and tumor shrinking were built and computed tomography (CT) s...

Descripción completa

Detalles Bibliográficos
Autores principales: Calusi, Silvia, Labanca, Giusy, Zani, Margherita, Casati, Marta, Marrazzo, Livia, Noferini, Linhsia, Talamonti, Cinzia, Fusi, Franco, Desideri, Isacco, Bonomo, Pierluigi, Livi, Lorenzo, Pallotta, Stefania
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448167/
https://www.ncbi.nlm.nih.gov/pubmed/30924286
http://dx.doi.org/10.1002/acm2.12564
_version_ 1783408642999975936
author Calusi, Silvia
Labanca, Giusy
Zani, Margherita
Casati, Marta
Marrazzo, Livia
Noferini, Linhsia
Talamonti, Cinzia
Fusi, Franco
Desideri, Isacco
Bonomo, Pierluigi
Livi, Lorenzo
Pallotta, Stefania
author_facet Calusi, Silvia
Labanca, Giusy
Zani, Margherita
Casati, Marta
Marrazzo, Livia
Noferini, Linhsia
Talamonti, Cinzia
Fusi, Franco
Desideri, Isacco
Bonomo, Pierluigi
Livi, Lorenzo
Pallotta, Stefania
author_sort Calusi, Silvia
collection PubMed
description A quantitative evaluation of the performances of the deformable image registration (DIR) algorithm implemented in MIM‐Maestro was performed using multiple similarity indices. Two phantoms, capable of mimicking different anatomical bending and tumor shrinking were built and computed tomography (CT) studies were acquired after applying different deformations. Three different contrast levels between internal structures were artificially created modifying the original CT values of one dataset. DIR algorithm was applied between datasets with increasing deformations and different contrast levels and manually refined with the Reg Refine tool. DIR algorithm ability in reproducing positions, volumes, and shapes of deformed structures was evaluated using similarity indices such as: landmark distances, Dice coefficients, Hausdorff distances, and maximum diameter differences between segmented structures. Similarity indices values worsen with increasing bending and volume difference between reference and target image sets. Registrations between images with low contrast (40 HU) obtain scores lower than those between images with high contrast (970 HU). The use of Reg Refine tool leads generally to an improvement of similarity parameters values, but the advantage is generally less evident for images with low contrast or when structures with large volume differences are involved. The dependence of DIR algorithm on image deformation extent and different contrast levels is well characterized through the combined use of multiple similarity indices.
format Online
Article
Text
id pubmed-6448167
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-64481672019-04-15 A multiparametric method to assess the MIM deformable image registration algorithm Calusi, Silvia Labanca, Giusy Zani, Margherita Casati, Marta Marrazzo, Livia Noferini, Linhsia Talamonti, Cinzia Fusi, Franco Desideri, Isacco Bonomo, Pierluigi Livi, Lorenzo Pallotta, Stefania J Appl Clin Med Phys Radiation Oncology Physics A quantitative evaluation of the performances of the deformable image registration (DIR) algorithm implemented in MIM‐Maestro was performed using multiple similarity indices. Two phantoms, capable of mimicking different anatomical bending and tumor shrinking were built and computed tomography (CT) studies were acquired after applying different deformations. Three different contrast levels between internal structures were artificially created modifying the original CT values of one dataset. DIR algorithm was applied between datasets with increasing deformations and different contrast levels and manually refined with the Reg Refine tool. DIR algorithm ability in reproducing positions, volumes, and shapes of deformed structures was evaluated using similarity indices such as: landmark distances, Dice coefficients, Hausdorff distances, and maximum diameter differences between segmented structures. Similarity indices values worsen with increasing bending and volume difference between reference and target image sets. Registrations between images with low contrast (40 HU) obtain scores lower than those between images with high contrast (970 HU). The use of Reg Refine tool leads generally to an improvement of similarity parameters values, but the advantage is generally less evident for images with low contrast or when structures with large volume differences are involved. The dependence of DIR algorithm on image deformation extent and different contrast levels is well characterized through the combined use of multiple similarity indices. John Wiley and Sons Inc. 2019-03-28 /pmc/articles/PMC6448167/ /pubmed/30924286 http://dx.doi.org/10.1002/acm2.12564 Text en © 2019 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Radiation Oncology Physics
Calusi, Silvia
Labanca, Giusy
Zani, Margherita
Casati, Marta
Marrazzo, Livia
Noferini, Linhsia
Talamonti, Cinzia
Fusi, Franco
Desideri, Isacco
Bonomo, Pierluigi
Livi, Lorenzo
Pallotta, Stefania
A multiparametric method to assess the MIM deformable image registration algorithm
title A multiparametric method to assess the MIM deformable image registration algorithm
title_full A multiparametric method to assess the MIM deformable image registration algorithm
title_fullStr A multiparametric method to assess the MIM deformable image registration algorithm
title_full_unstemmed A multiparametric method to assess the MIM deformable image registration algorithm
title_short A multiparametric method to assess the MIM deformable image registration algorithm
title_sort multiparametric method to assess the mim deformable image registration algorithm
topic Radiation Oncology Physics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448167/
https://www.ncbi.nlm.nih.gov/pubmed/30924286
http://dx.doi.org/10.1002/acm2.12564
work_keys_str_mv AT calusisilvia amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT labancagiusy amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT zanimargherita amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT casatimarta amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT marrazzolivia amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT noferinilinhsia amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT talamonticinzia amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT fusifranco amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT desideriisacco amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT bonomopierluigi amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT livilorenzo amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT pallottastefania amultiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT calusisilvia multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT labancagiusy multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT zanimargherita multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT casatimarta multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT marrazzolivia multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT noferinilinhsia multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT talamonticinzia multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT fusifranco multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT desideriisacco multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT bonomopierluigi multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT livilorenzo multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm
AT pallottastefania multiparametricmethodtoassessthemimdeformableimageregistrationalgorithm