Cargando…
Entity recognition in Chinese clinical text using attention-based CNN-LSTM-CRF
BACKGROUND: Clinical entity recognition as a fundamental task of clinical text processing has been attracted a great deal of attention during the last decade. However, most studies focus on clinical text in English rather than other languages. Recently, a few researchers have began to study entity r...
Autores principales: | Tang, Buzhou, Wang, Xiaolong, Yan, Jun, Chen, Qingcai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448175/ https://www.ncbi.nlm.nih.gov/pubmed/30943972 http://dx.doi.org/10.1186/s12911-019-0787-y |
Ejemplares similares
-
Entity recognition from clinical texts via recurrent neural network
por: Liu, Zengjian, et al.
Publicado: (2017) -
Research on Named Entity Recognition Method of Metro On-Board Equipment Based on Multiheaded Self-Attention Mechanism and CNN-BiLSTM-CRF
por: Lin, Junting, et al.
Publicado: (2022) -
CNN-based ranking for biomedical entity normalization
por: Li, Haodi, et al.
Publicado: (2017) -
Temporal indexing of medical entity in Chinese clinical notes
por: Liu, Zengjian, et al.
Publicado: (2019) -
Improving deep learning method for biomedical named entity recognition by using entity definition information
por: Xiong, Ying, et al.
Publicado: (2021)