Cargando…
Interpreting mosquito feeding patterns in Australia through an ecological lens: an analysis of blood meal studies
BACKGROUND: Mosquito-borne pathogens contribute significantly to the global burden of disease, infecting millions of people each year. Mosquito feeding is critical to the transmission dynamics of pathogens, and thus it is important to understanding and interpreting mosquito feeding patterns. In this...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448275/ https://www.ncbi.nlm.nih.gov/pubmed/30944025 http://dx.doi.org/10.1186/s13071-019-3405-z |
Sumario: | BACKGROUND: Mosquito-borne pathogens contribute significantly to the global burden of disease, infecting millions of people each year. Mosquito feeding is critical to the transmission dynamics of pathogens, and thus it is important to understanding and interpreting mosquito feeding patterns. In this paper we explore mosquito feeding patterns and their implications for disease ecology through a meta-analysis of published blood meal results collected across Australia from more than 12,000 blood meals from 22 species. To assess mosquito-vertebrate associations and identify mosquitoes on a spectrum of generalist or specialist feeders, we analysed blood meal data in two ways; first using a novel odds ratio analysis, and secondly by calculating Shannon’s diversity scores. RESULTS: We find that each mosquito species had a unique feeding association with different vertebrates, suggesting species-specific feeding patterns. Broadly, mosquito species could be grouped broadly into those that were primarily ornithophilic and those that fed more often on livestock. Aggregated feeding patterns observed across Australia were not explained by intrinsic variables such as mosquito genetics or larval habitats. We discuss the implications for disease transmission by vector mosquito species classified as generalist-feeders (such as Aedes vigilax and Culex annulirostris), or specialists (such as Aedes aegypti) in light of potential influences on mosquito host choice. CONCLUSIONS: Overall, we find that whilst existing blood meal studies in Australia are useful for investigating mosquito feeding patterns, standardisation of blood meal study methodologies and analyses, including the incorporation of vertebrate surveys, would improve predictions of the impact of vector-host interactions on disease ecology. Our analysis can also be used as a framework to explore mosquito-vertebrate associations, in which host availability data is unavailable, in other global systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13071-019-3405-z) contains supplementary material, which is available to authorized users. |
---|