Cargando…
From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering
In model-based clustering mixture models are used to group data points into clusters. A useful concept introduced for Gaussian mixtures by Malsiner Walli et al. (Stat Comput 26:303–324, 2016) are sparse finite mixtures, where the prior distribution on the weight distribution of a mixture with K comp...
Autores principales: | Frühwirth-Schnatter, Sylvia, Malsiner-Walli, Gertraud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448299/ https://www.ncbi.nlm.nih.gov/pubmed/31007770 http://dx.doi.org/10.1007/s11634-018-0329-y |
Ejemplares similares
-
Model-based clustering based on sparse
finite Gaussian mixtures
por: Malsiner-Walli, Gertraud, et al.
Publicado: (2014) -
How many data clusters are in the Galaxy data set?: Bayesian cluster analysis in action
por: Grün, Bettina, et al.
Publicado: (2021) -
Identifying Mixtures of Mixtures Using Bayesian Estimation
por: Malsiner-Walli, Gertraud, et al.
Publicado: (2017) -
Finite mixture and Markov switching models
por: Frühwirth-Schnatter, Sylvia
Publicado: (2006) -
Semi‐parametric Regression under Model Uncertainty: Economic Applications
por: Malsiner‐Walli, Gertraud, et al.
Publicado: (2019)