Cargando…

Multilayer network analysis of miRNA and protein expression profiles in breast cancer patients

MiRNAs and proteins play important roles in different stages of breast tumor development and serve as biomarkers for the early diagnosis of breast cancer. A new algorithm that combines machine learning algorithms and multilayer complex network analysis is hereby proposed to explore the potential dia...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yang, Chen, Jiannan, Wang, Yu, Wang, Dehua, Cong, Weihui, Lai, Bo Shiun, Zhao, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448837/
https://www.ncbi.nlm.nih.gov/pubmed/30946749
http://dx.doi.org/10.1371/journal.pone.0202311
Descripción
Sumario:MiRNAs and proteins play important roles in different stages of breast tumor development and serve as biomarkers for the early diagnosis of breast cancer. A new algorithm that combines machine learning algorithms and multilayer complex network analysis is hereby proposed to explore the potential diagnostic values of miRNAs and proteins. XGBoost and random forest algorithms were employed to screen the most important miRNAs and proteins. Maximal information coefficient was applied to assess intralayer and interlayer connection. A multilayer complex network was constructed to identify miRNAs and proteins that could serve as biomarkers for breast cancer. Proteins and miRNAs that are nodes in the network were subsequently categorized into two network layers considering their distinct functions. The betweenness centrality was used as the first measurement of the importance of the nodes within each single layer. The degree of the nodes was chosen as the second measurement to map their signalling pathways. By combining these two measurements into one score and comparing the difference of the same candidate between normal tissue and cancer tissue, this novel multilayer network analysis could be applied to successfully identify molecules associated with breast cancer.