Cargando…

Connecting single-cell properties to collective behavior in multiple wild isolates of the Enterobacter cloacae complex

Some strains of motile bacteria self-organize to form spatial patterns of high and low cell density over length scales that can be observed by eye. One such collective behavior is the formation in semisolid agar media of a high cell density swarm band. We isolated 7 wild strains of the Enterobacter...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Sean, Guo, Xiaokan, Boedicker, James Q.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448878/
https://www.ncbi.nlm.nih.gov/pubmed/30947254
http://dx.doi.org/10.1371/journal.pone.0214719
Descripción
Sumario:Some strains of motile bacteria self-organize to form spatial patterns of high and low cell density over length scales that can be observed by eye. One such collective behavior is the formation in semisolid agar media of a high cell density swarm band. We isolated 7 wild strains of the Enterobacter cloacae complex capable of forming this band and found its propagation speed can vary 2.5 fold across strains. To connect such variability in collective motility to strain properties, each strain’s single-cell motility and exponential growth rates were measured. The band speed did not significantly correlate with any individual strain property; however, a multilinear analysis revealed that the band speed was set by a combination of the run speed and tumbling frequency. Comparison of variability in closely-related wild isolates has the potential to reveal how changes in single-cell properties influence the collective behavior of populations.