Cargando…
Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study
AIMS/HYPOTHESIS: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arg...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448944/ https://www.ncbi.nlm.nih.gov/pubmed/28936587 http://dx.doi.org/10.1007/s00125-017-4436-7 |
_version_ | 1783408761607553024 |
---|---|
author | Molnos, Sophie Wahl, Simone Haid, Mark Eekhoff, E. Marelise W. Pool, René Floegel, Anna Deelen, Joris Much, Daniela Prehn, Cornelia Breier, Michaela Draisma, Harmen H. van Leeuwen, Nienke Simonis-Bik, Annemarie M. C. Jonsson, Anna Willemsen, Gonneke Bernigau, Wolfgang Wang-Sattler, Rui Suhre, Karsten Peters, Annette Thorand, Barbara Herder, Christian Rathmann, Wolfgang Roden, Michael Gieger, Christian Kramer, Mark H. H. van Heemst, Diana Pedersen, Helle K. Gudmundsdottir, Valborg Schulze, Matthias B. Pischon, Tobias de Geus, Eco J. C. Boeing, Heiner Boomsma, Dorret I. Ziegler, Anette G. Slagboom, P. Eline Hummel, Sandra Beekman, Marian Grallert, Harald Brunak, Søren McCarthy, Mark I. Gupta, Ramneek Pearson, Ewan R. Adamski, Jerzy ’t Hart, Leen M. |
author_facet | Molnos, Sophie Wahl, Simone Haid, Mark Eekhoff, E. Marelise W. Pool, René Floegel, Anna Deelen, Joris Much, Daniela Prehn, Cornelia Breier, Michaela Draisma, Harmen H. van Leeuwen, Nienke Simonis-Bik, Annemarie M. C. Jonsson, Anna Willemsen, Gonneke Bernigau, Wolfgang Wang-Sattler, Rui Suhre, Karsten Peters, Annette Thorand, Barbara Herder, Christian Rathmann, Wolfgang Roden, Michael Gieger, Christian Kramer, Mark H. H. van Heemst, Diana Pedersen, Helle K. Gudmundsdottir, Valborg Schulze, Matthias B. Pischon, Tobias de Geus, Eco J. C. Boeing, Heiner Boomsma, Dorret I. Ziegler, Anette G. Slagboom, P. Eline Hummel, Sandra Beekman, Marian Grallert, Harald Brunak, Søren McCarthy, Mark I. Gupta, Ramneek Pearson, Ewan R. Adamski, Jerzy ’t Hart, Leen M. |
author_sort | Molnos, Sophie |
collection | PubMed |
description | AIMS/HYPOTHESIS: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. METHODS: We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data (n = 340) and epidemiological case–control studies of prevalent (n = 4925) and incident (n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders. RESULTS: There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p < 9.2 × 10(−7)). These associations were significantly stronger compared with the individual metabolite components. One of the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2), in addition showed a directionally consistent positive association with OGTT-derived measures of insulin secretion and resistance (p ≤ 5.4 × 10(−3)) and prevalent type 2 diabetes (OR(Val_PC ae C32:2) 2.64 [β 0.97 ± 0.09], p = 1.0 × 10(−27)). Furthermore, Val_PC ae C32:2 predicted incident diabetes independent of established risk factors in two epidemiological cohort studies (HR(Val_PC ae C32:2) 1.57 [β 0.45 ± 0.06]; p = 1.3 × 10(−15)), leading to modest improvements in the receiver operating characteristics when added to a model containing a set of established risk factors in both cohorts (increases from 0.780 to 0.801 and from 0.862 to 0.865 respectively, when added to the model containing traditional risk factors + glucose). CONCLUSIONS/INTERPRETATION: In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-017-4436-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users. |
format | Online Article Text |
id | pubmed-6448944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-64489442019-04-17 Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study Molnos, Sophie Wahl, Simone Haid, Mark Eekhoff, E. Marelise W. Pool, René Floegel, Anna Deelen, Joris Much, Daniela Prehn, Cornelia Breier, Michaela Draisma, Harmen H. van Leeuwen, Nienke Simonis-Bik, Annemarie M. C. Jonsson, Anna Willemsen, Gonneke Bernigau, Wolfgang Wang-Sattler, Rui Suhre, Karsten Peters, Annette Thorand, Barbara Herder, Christian Rathmann, Wolfgang Roden, Michael Gieger, Christian Kramer, Mark H. H. van Heemst, Diana Pedersen, Helle K. Gudmundsdottir, Valborg Schulze, Matthias B. Pischon, Tobias de Geus, Eco J. C. Boeing, Heiner Boomsma, Dorret I. Ziegler, Anette G. Slagboom, P. Eline Hummel, Sandra Beekman, Marian Grallert, Harald Brunak, Søren McCarthy, Mark I. Gupta, Ramneek Pearson, Ewan R. Adamski, Jerzy ’t Hart, Leen M. Diabetologia Article AIMS/HYPOTHESIS: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. METHODS: We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data (n = 340) and epidemiological case–control studies of prevalent (n = 4925) and incident (n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders. RESULTS: There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p < 9.2 × 10(−7)). These associations were significantly stronger compared with the individual metabolite components. One of the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2), in addition showed a directionally consistent positive association with OGTT-derived measures of insulin secretion and resistance (p ≤ 5.4 × 10(−3)) and prevalent type 2 diabetes (OR(Val_PC ae C32:2) 2.64 [β 0.97 ± 0.09], p = 1.0 × 10(−27)). Furthermore, Val_PC ae C32:2 predicted incident diabetes independent of established risk factors in two epidemiological cohort studies (HR(Val_PC ae C32:2) 1.57 [β 0.45 ± 0.06]; p = 1.3 × 10(−15)), leading to modest improvements in the receiver operating characteristics when added to a model containing a set of established risk factors in both cohorts (increases from 0.780 to 0.801 and from 0.862 to 0.865 respectively, when added to the model containing traditional risk factors + glucose). CONCLUSIONS/INTERPRETATION: In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-017-4436-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users. Springer Berlin Heidelberg 2017-10-25 2018 /pmc/articles/PMC6448944/ /pubmed/28936587 http://dx.doi.org/10.1007/s00125-017-4436-7 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Molnos, Sophie Wahl, Simone Haid, Mark Eekhoff, E. Marelise W. Pool, René Floegel, Anna Deelen, Joris Much, Daniela Prehn, Cornelia Breier, Michaela Draisma, Harmen H. van Leeuwen, Nienke Simonis-Bik, Annemarie M. C. Jonsson, Anna Willemsen, Gonneke Bernigau, Wolfgang Wang-Sattler, Rui Suhre, Karsten Peters, Annette Thorand, Barbara Herder, Christian Rathmann, Wolfgang Roden, Michael Gieger, Christian Kramer, Mark H. H. van Heemst, Diana Pedersen, Helle K. Gudmundsdottir, Valborg Schulze, Matthias B. Pischon, Tobias de Geus, Eco J. C. Boeing, Heiner Boomsma, Dorret I. Ziegler, Anette G. Slagboom, P. Eline Hummel, Sandra Beekman, Marian Grallert, Harald Brunak, Søren McCarthy, Mark I. Gupta, Ramneek Pearson, Ewan R. Adamski, Jerzy ’t Hart, Leen M. Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study |
title | Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study |
title_full | Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study |
title_fullStr | Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study |
title_full_unstemmed | Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study |
title_short | Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study |
title_sort | metabolite ratios as potential biomarkers for type 2 diabetes: a direct study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448944/ https://www.ncbi.nlm.nih.gov/pubmed/28936587 http://dx.doi.org/10.1007/s00125-017-4436-7 |
work_keys_str_mv | AT molnossophie metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT wahlsimone metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT haidmark metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT eekhoffemarelisew metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT poolrene metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT floegelanna metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT deelenjoris metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT muchdaniela metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT prehncornelia metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT breiermichaela metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT draismaharmenh metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT vanleeuwennienke metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT simonisbikannemariemc metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT jonssonanna metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT willemsengonneke metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT bernigauwolfgang metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT wangsattlerrui metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT suhrekarsten metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT petersannette metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT thorandbarbara metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT herderchristian metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT rathmannwolfgang metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT rodenmichael metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT giegerchristian metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT kramermarkhh metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT vanheemstdiana metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT pedersenhellek metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT gudmundsdottirvalborg metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT schulzematthiasb metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT pischontobias metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT degeusecojc metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT boeingheiner metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT boomsmadorreti metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT ziegleranetteg metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT slagboompeline metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT hummelsandra metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT beekmanmarian metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT grallertharald metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT brunaksøren metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT mccarthymarki metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT guptaramneek metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT pearsonewanr metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT adamskijerzy metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy AT thartleenm metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy |