Cargando…

Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study

AIMS/HYPOTHESIS: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arg...

Descripción completa

Detalles Bibliográficos
Autores principales: Molnos, Sophie, Wahl, Simone, Haid, Mark, Eekhoff, E. Marelise W., Pool, René, Floegel, Anna, Deelen, Joris, Much, Daniela, Prehn, Cornelia, Breier, Michaela, Draisma, Harmen H., van Leeuwen, Nienke, Simonis-Bik, Annemarie M. C., Jonsson, Anna, Willemsen, Gonneke, Bernigau, Wolfgang, Wang-Sattler, Rui, Suhre, Karsten, Peters, Annette, Thorand, Barbara, Herder, Christian, Rathmann, Wolfgang, Roden, Michael, Gieger, Christian, Kramer, Mark H. H., van Heemst, Diana, Pedersen, Helle K., Gudmundsdottir, Valborg, Schulze, Matthias B., Pischon, Tobias, de Geus, Eco J. C., Boeing, Heiner, Boomsma, Dorret I., Ziegler, Anette G., Slagboom, P. Eline, Hummel, Sandra, Beekman, Marian, Grallert, Harald, Brunak, Søren, McCarthy, Mark I., Gupta, Ramneek, Pearson, Ewan R., Adamski, Jerzy, ’t Hart, Leen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448944/
https://www.ncbi.nlm.nih.gov/pubmed/28936587
http://dx.doi.org/10.1007/s00125-017-4436-7
_version_ 1783408761607553024
author Molnos, Sophie
Wahl, Simone
Haid, Mark
Eekhoff, E. Marelise W.
Pool, René
Floegel, Anna
Deelen, Joris
Much, Daniela
Prehn, Cornelia
Breier, Michaela
Draisma, Harmen H.
van Leeuwen, Nienke
Simonis-Bik, Annemarie M. C.
Jonsson, Anna
Willemsen, Gonneke
Bernigau, Wolfgang
Wang-Sattler, Rui
Suhre, Karsten
Peters, Annette
Thorand, Barbara
Herder, Christian
Rathmann, Wolfgang
Roden, Michael
Gieger, Christian
Kramer, Mark H. H.
van Heemst, Diana
Pedersen, Helle K.
Gudmundsdottir, Valborg
Schulze, Matthias B.
Pischon, Tobias
de Geus, Eco J. C.
Boeing, Heiner
Boomsma, Dorret I.
Ziegler, Anette G.
Slagboom, P. Eline
Hummel, Sandra
Beekman, Marian
Grallert, Harald
Brunak, Søren
McCarthy, Mark I.
Gupta, Ramneek
Pearson, Ewan R.
Adamski, Jerzy
’t Hart, Leen M.
author_facet Molnos, Sophie
Wahl, Simone
Haid, Mark
Eekhoff, E. Marelise W.
Pool, René
Floegel, Anna
Deelen, Joris
Much, Daniela
Prehn, Cornelia
Breier, Michaela
Draisma, Harmen H.
van Leeuwen, Nienke
Simonis-Bik, Annemarie M. C.
Jonsson, Anna
Willemsen, Gonneke
Bernigau, Wolfgang
Wang-Sattler, Rui
Suhre, Karsten
Peters, Annette
Thorand, Barbara
Herder, Christian
Rathmann, Wolfgang
Roden, Michael
Gieger, Christian
Kramer, Mark H. H.
van Heemst, Diana
Pedersen, Helle K.
Gudmundsdottir, Valborg
Schulze, Matthias B.
Pischon, Tobias
de Geus, Eco J. C.
Boeing, Heiner
Boomsma, Dorret I.
Ziegler, Anette G.
Slagboom, P. Eline
Hummel, Sandra
Beekman, Marian
Grallert, Harald
Brunak, Søren
McCarthy, Mark I.
Gupta, Ramneek
Pearson, Ewan R.
Adamski, Jerzy
’t Hart, Leen M.
author_sort Molnos, Sophie
collection PubMed
description AIMS/HYPOTHESIS: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. METHODS: We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data (n = 340) and epidemiological case–control studies of prevalent (n = 4925) and incident (n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders. RESULTS: There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p < 9.2 × 10(−7)). These associations were significantly stronger compared with the individual metabolite components. One of the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2), in addition showed a directionally consistent positive association with OGTT-derived measures of insulin secretion and resistance (p ≤ 5.4 × 10(−3)) and prevalent type 2 diabetes (OR(Val_PC ae C32:2) 2.64 [β 0.97 ± 0.09], p = 1.0 × 10(−27)). Furthermore, Val_PC ae C32:2 predicted incident diabetes independent of established risk factors in two epidemiological cohort studies (HR(Val_PC ae C32:2) 1.57 [β 0.45 ± 0.06]; p = 1.3 × 10(−15)), leading to modest improvements in the receiver operating characteristics when added to a model containing a set of established risk factors in both cohorts (increases from 0.780 to 0.801 and from 0.862 to 0.865 respectively, when added to the model containing traditional risk factors + glucose). CONCLUSIONS/INTERPRETATION: In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-017-4436-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
format Online
Article
Text
id pubmed-6448944
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-64489442019-04-17 Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study Molnos, Sophie Wahl, Simone Haid, Mark Eekhoff, E. Marelise W. Pool, René Floegel, Anna Deelen, Joris Much, Daniela Prehn, Cornelia Breier, Michaela Draisma, Harmen H. van Leeuwen, Nienke Simonis-Bik, Annemarie M. C. Jonsson, Anna Willemsen, Gonneke Bernigau, Wolfgang Wang-Sattler, Rui Suhre, Karsten Peters, Annette Thorand, Barbara Herder, Christian Rathmann, Wolfgang Roden, Michael Gieger, Christian Kramer, Mark H. H. van Heemst, Diana Pedersen, Helle K. Gudmundsdottir, Valborg Schulze, Matthias B. Pischon, Tobias de Geus, Eco J. C. Boeing, Heiner Boomsma, Dorret I. Ziegler, Anette G. Slagboom, P. Eline Hummel, Sandra Beekman, Marian Grallert, Harald Brunak, Søren McCarthy, Mark I. Gupta, Ramneek Pearson, Ewan R. Adamski, Jerzy ’t Hart, Leen M. Diabetologia Article AIMS/HYPOTHESIS: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. METHODS: We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data (n = 340) and epidemiological case–control studies of prevalent (n = 4925) and incident (n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders. RESULTS: There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p < 9.2 × 10(−7)). These associations were significantly stronger compared with the individual metabolite components. One of the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2), in addition showed a directionally consistent positive association with OGTT-derived measures of insulin secretion and resistance (p ≤ 5.4 × 10(−3)) and prevalent type 2 diabetes (OR(Val_PC ae C32:2) 2.64 [β 0.97 ± 0.09], p = 1.0 × 10(−27)). Furthermore, Val_PC ae C32:2 predicted incident diabetes independent of established risk factors in two epidemiological cohort studies (HR(Val_PC ae C32:2) 1.57 [β 0.45 ± 0.06]; p = 1.3 × 10(−15)), leading to modest improvements in the receiver operating characteristics when added to a model containing a set of established risk factors in both cohorts (increases from 0.780 to 0.801 and from 0.862 to 0.865 respectively, when added to the model containing traditional risk factors + glucose). CONCLUSIONS/INTERPRETATION: In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-017-4436-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users. Springer Berlin Heidelberg 2017-10-25 2018 /pmc/articles/PMC6448944/ /pubmed/28936587 http://dx.doi.org/10.1007/s00125-017-4436-7 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Molnos, Sophie
Wahl, Simone
Haid, Mark
Eekhoff, E. Marelise W.
Pool, René
Floegel, Anna
Deelen, Joris
Much, Daniela
Prehn, Cornelia
Breier, Michaela
Draisma, Harmen H.
van Leeuwen, Nienke
Simonis-Bik, Annemarie M. C.
Jonsson, Anna
Willemsen, Gonneke
Bernigau, Wolfgang
Wang-Sattler, Rui
Suhre, Karsten
Peters, Annette
Thorand, Barbara
Herder, Christian
Rathmann, Wolfgang
Roden, Michael
Gieger, Christian
Kramer, Mark H. H.
van Heemst, Diana
Pedersen, Helle K.
Gudmundsdottir, Valborg
Schulze, Matthias B.
Pischon, Tobias
de Geus, Eco J. C.
Boeing, Heiner
Boomsma, Dorret I.
Ziegler, Anette G.
Slagboom, P. Eline
Hummel, Sandra
Beekman, Marian
Grallert, Harald
Brunak, Søren
McCarthy, Mark I.
Gupta, Ramneek
Pearson, Ewan R.
Adamski, Jerzy
’t Hart, Leen M.
Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study
title Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study
title_full Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study
title_fullStr Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study
title_full_unstemmed Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study
title_short Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study
title_sort metabolite ratios as potential biomarkers for type 2 diabetes: a direct study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448944/
https://www.ncbi.nlm.nih.gov/pubmed/28936587
http://dx.doi.org/10.1007/s00125-017-4436-7
work_keys_str_mv AT molnossophie metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT wahlsimone metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT haidmark metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT eekhoffemarelisew metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT poolrene metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT floegelanna metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT deelenjoris metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT muchdaniela metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT prehncornelia metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT breiermichaela metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT draismaharmenh metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT vanleeuwennienke metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT simonisbikannemariemc metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT jonssonanna metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT willemsengonneke metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT bernigauwolfgang metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT wangsattlerrui metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT suhrekarsten metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT petersannette metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT thorandbarbara metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT herderchristian metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT rathmannwolfgang metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT rodenmichael metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT giegerchristian metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT kramermarkhh metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT vanheemstdiana metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT pedersenhellek metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT gudmundsdottirvalborg metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT schulzematthiasb metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT pischontobias metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT degeusecojc metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT boeingheiner metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT boomsmadorreti metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT ziegleranetteg metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT slagboompeline metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT hummelsandra metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT beekmanmarian metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT grallertharald metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT brunaksøren metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT mccarthymarki metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT guptaramneek metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT pearsonewanr metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT adamskijerzy metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy
AT thartleenm metaboliteratiosaspotentialbiomarkersfortype2diabetesadirectstudy