Cargando…
Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons
CA1 neurons in epileptic animals are vulnerable to selective changes in ion channel expression, called acquired channelopathies, which can increase the excitability of a neuron. Under normal conditions there is a gradient of ion channel expression and intrinsic excitability along the longitudinal, d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449163/ https://www.ncbi.nlm.nih.gov/pubmed/30957013 http://dx.doi.org/10.1523/ENEURO.0036-19.2019 |
_version_ | 1783408794266501120 |
---|---|
author | Arnold, Elizabeth C. McMurray, Calli Gray, Richard Johnston, Daniel |
author_facet | Arnold, Elizabeth C. McMurray, Calli Gray, Richard Johnston, Daniel |
author_sort | Arnold, Elizabeth C. |
collection | PubMed |
description | CA1 neurons in epileptic animals are vulnerable to selective changes in ion channel expression, called acquired channelopathies, which can increase the excitability of a neuron. Under normal conditions there is a gradient of ion channel expression and intrinsic excitability along the longitudinal, dorsoventral axis of hippocampal area CA1 of the rodent. Many of these channels, including M-channels, GIRK channels and HCN channels, all have dorsoventral expression gradients that might be altered in rodent models of epilepsy. Here, we show that the excitability of dorsal, but not ventral CA1 neurons, had an increased firing rate, reduced interspike interval (ISI) and increased input resistance in a status epilepticus (SE) model of temporal lobe epilepsy (TLE). As a result, the excitability of CA1 neurons became uniform across the dorsoventral axis of the rat hippocampus post-SE. Using current clamp recordings with pharmacology and immunohistochemistry, we demonstrate that the expression of HCN channels was downregulated in the dorsal CA1 region post-SE, while the expression of M and GIRK channels were unchanged. We did not find this acquired channelopathy in ventral CA1 neurons post-SE. Our results suggest that the excitability of dorsal CA1 neurons post-SE increase to resemble the intrinsic properties of ventral CA1 neurons, which likely makes the hippocampal circuit more permissible to seizures, and contributes to the cognitive impairments associated with chronic epilepsy. |
format | Online Article Text |
id | pubmed-6449163 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-64491632019-04-05 Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons Arnold, Elizabeth C. McMurray, Calli Gray, Richard Johnston, Daniel eNeuro New Research CA1 neurons in epileptic animals are vulnerable to selective changes in ion channel expression, called acquired channelopathies, which can increase the excitability of a neuron. Under normal conditions there is a gradient of ion channel expression and intrinsic excitability along the longitudinal, dorsoventral axis of hippocampal area CA1 of the rodent. Many of these channels, including M-channels, GIRK channels and HCN channels, all have dorsoventral expression gradients that might be altered in rodent models of epilepsy. Here, we show that the excitability of dorsal, but not ventral CA1 neurons, had an increased firing rate, reduced interspike interval (ISI) and increased input resistance in a status epilepticus (SE) model of temporal lobe epilepsy (TLE). As a result, the excitability of CA1 neurons became uniform across the dorsoventral axis of the rat hippocampus post-SE. Using current clamp recordings with pharmacology and immunohistochemistry, we demonstrate that the expression of HCN channels was downregulated in the dorsal CA1 region post-SE, while the expression of M and GIRK channels were unchanged. We did not find this acquired channelopathy in ventral CA1 neurons post-SE. Our results suggest that the excitability of dorsal CA1 neurons post-SE increase to resemble the intrinsic properties of ventral CA1 neurons, which likely makes the hippocampal circuit more permissible to seizures, and contributes to the cognitive impairments associated with chronic epilepsy. Society for Neuroscience 2019-04-02 /pmc/articles/PMC6449163/ /pubmed/30957013 http://dx.doi.org/10.1523/ENEURO.0036-19.2019 Text en Copyright © 2019 Arnold et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | New Research Arnold, Elizabeth C. McMurray, Calli Gray, Richard Johnston, Daniel Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons |
title | Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons |
title_full | Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons |
title_fullStr | Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons |
title_full_unstemmed | Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons |
title_short | Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons |
title_sort | epilepsy-induced reduction in hcn channel expression contributes to an increased excitability in dorsal, but not ventral, hippocampal ca1 neurons |
topic | New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449163/ https://www.ncbi.nlm.nih.gov/pubmed/30957013 http://dx.doi.org/10.1523/ENEURO.0036-19.2019 |
work_keys_str_mv | AT arnoldelizabethc epilepsyinducedreductioninhcnchannelexpressioncontributestoanincreasedexcitabilityindorsalbutnotventralhippocampalca1neurons AT mcmurraycalli epilepsyinducedreductioninhcnchannelexpressioncontributestoanincreasedexcitabilityindorsalbutnotventralhippocampalca1neurons AT grayrichard epilepsyinducedreductioninhcnchannelexpressioncontributestoanincreasedexcitabilityindorsalbutnotventralhippocampalca1neurons AT johnstondaniel epilepsyinducedreductioninhcnchannelexpressioncontributestoanincreasedexcitabilityindorsalbutnotventralhippocampalca1neurons |