Cargando…
Supervised machine learning of ultracold atoms with speckle disorder
We analyze how accurately supervised machine learning techniques can predict the lowest energy levels of one-dimensional noninteracting ultracold atoms subject to the correlated disorder due to an optical speckle field. Deep neural networks with different numbers of hidden layers and neurons per lay...
Autores principales: | Pilati, S., Pieri, P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449337/ https://www.ncbi.nlm.nih.gov/pubmed/30948777 http://dx.doi.org/10.1038/s41598-019-42125-w |
Ejemplares similares
-
Ultracold atomic physics
por: Zhai, Hui
Publicado: (2021) -
Ultracold atom interferometry in space
por: Lachmann, Maike D., et al.
Publicado: (2021) -
Robust Digital Holography For Ultracold Atom Trapping
por: Gaunt, Alexander L., et al.
Publicado: (2012) -
Inductively guided circuits for ultracold dressed atoms
por: Sinuco-León, German A., et al.
Publicado: (2014) -
Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms
por: Lecoutre, Baptiste, et al.
Publicado: (2022)