Cargando…

Vinculin Force Sensor Detects Tumor-Osteocyte Interactions

This study utilized a Förster resonance energy transfer (FRET)-based molecular tension sensor and live cell imaging to evaluate the effect of osteocytes, a mechanosensitive bone cell, on the migratory behavior of tumor cells. Two cell lines derived from MDA-MB-231 breast cancer cells were transfecte...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Fangjia, Chen, Andy, Reeser, Andrew, Wang, Yue, Fan, Yao, Liu, Shengzhi, Zhao, Xinyu, Prakash, Rahul, Kota, Divya, Li, Bai-Yan, Yokota, Hiroki, Liu, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449341/
https://www.ncbi.nlm.nih.gov/pubmed/30948840
http://dx.doi.org/10.1038/s41598-019-42132-x
Descripción
Sumario:This study utilized a Förster resonance energy transfer (FRET)-based molecular tension sensor and live cell imaging to evaluate the effect of osteocytes, a mechanosensitive bone cell, on the migratory behavior of tumor cells. Two cell lines derived from MDA-MB-231 breast cancer cells were transfected with the vinculin tension sensor to quantitatively evaluate the force in focal adhesions of the tumor cell. Tumor cells treated with MLO-A5 osteocyte-conditioned media (CM) decreased the tensile forces in their focal adhesions and decreased their migratory potential. Tumor cells treated with media derived from MLO-A5 cells exposed to fluid flow-driven shear stress (FFCM) increased the tensile forces and increased migratory potential. Focal adhesion tension in tumor cells was also affected by distance from MLO-A5 cells when the two cells were co-cultured, where tumor cells close to MLO-A5 cells exhibited lower tension and decreased cell motility. Overall, this study demonstrates that focal adhesion tension is involved in altered migratory potential of tumor cells, and tumor-osteocyte interactions decrease the tension and motility of tumor cells.